PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Diagnosis of concrete structures distress due to alkali-aggregate reaction

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Damage and defects observed in concrete elements, such as a network of microcracks, popouts and eflorrescence can be caused by a variety of deleterious processes. The causes can include mechanical (overloading), physical (freeze-thaw cycle) or chemical exposure (sulphate corrosion, alkali-aggregate reaction). This paper analyses distress due to alkali-silica reaction, detected in selected concrete structures. The analysed concrete elements exhibited cracking, exudations and surface popouts. Identification of the presence of hydrated sodium-potassiumcalcium silicate gel can be considered the primary symptom suggestive of an alkali-silica reaction attack. Other damage-causing mechanisms can occur simultaneously.
Rocznik
Strony
23--29
Opis fizyczny
Bibliogr. 15, fot., wykr., rys.
Twórcy
autor
  • Faculty of Civil Engineering and Architecture, Kielce University of Technology, 7 Tysiąclecia Państwa Polskiego Ave., 25-314 Kielce, Poland
  • Faculty of Civil Engineering and Architecture, Kielce University of Technology, 7 Tysiąclecia Państwa Polskiego Ave., 25-314 Kielce, Poland
autor
  • Faculty of Civil Engineering and Architecture, Kielce University of Technology, 7 Tysiąclecia Państwa Polskiego Ave., 25-314 Kielce, Poland
Bibliografia
  • [1] Z. Owsiak, “The alkali-silica reaction in concrete”, Pol. Cer. Bull.: Ceramics 72, CD-ROM (2002).
  • [2] Z. Owsiak, J. Zapała, and P. Czapik, “Diagnosis of reaction causes of gravel aggregate with alkalis in concrete”, Cement Lime Concrete 17 (3), 149–154 (2012), (in Polish).
  • [3] J.M. Ponce and O.R. Batic, “Different manifestations of the alkali-silica reaction in concrete according to the reaction kinetics of the reactive aggregate”, Cement & Concrete Research 36 (6), 1148–1156 (2006).
  • [4] Guide Specifications for Concrete Subject to Alkali-Silica Reactions, NRMCA, Maryland, 1993.
  • [5] D.W. Hobbs, “Alkali levels required to induce cracking due to ASR in UK concretes”, Proc. 11th ICAAR 1, 189–198 (2000).
  • [6] PN-EN-197-1:2012 Cement, Composition, Specification and Conformity Criteria for Common Cements, 2012.
  • [7] C. Larive, A. Laplaud, and O. Coussy, “The role of water in alkali-silica reaction”, Proc. 11th ICAAR 1, 61–69 (2000).
  • [8] Z. Owsiak, “Converting alkalis from aggregate to solution in concrete pores”, Cement Lime Concrete 6 (4) 151–153 (2001), (in Polish).
  • [9] M.A. B´erub´e and J.F. Dorion, “Laboratory and field investigations of the influence of sodium chloride on alkali-silica reactivity”, Proc. 11th ICAAR 1, 149–158 (2000).
  • [10] S. Davied, “The moisture condition of field concrete exhibition ASR”, Proc. 2nd ICDC SP-126, 973–987 (1991).
  • [11] J. Lindg˚ard, “ASR: literature review on parameters influencing laboratory performance testing”, Cement & Concrete Research, 42 (2), 223–243 (2002).
  • [12] D. Palmer, “The diagnosis of ASR”, in Report of a Working Party, BCA, Slough, 1992.
  • [13] M. Kawamura and K. Iwahori, “Some theoretical considerations on expansive pressure of ASR gel”, Proc. 12th ICAAR 1, 135–142 (2004).
  • [14] R. Helmuth, “Alkali-silica reactivity: an overview of research”, SHRP-C-342, CD-ROM (1993).
  • [15] ASTM-856-14 – Standard Practice for Petrographic Examination of Hardened Concrete (2014).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b51c4ba8-2e88-43e0-91f1-e003cd525309
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.