Control and Cybernetics
vol. 42 (2013) No. 1

Creating a knowledge database on system dependability
and resilience*

by

Marcin Kubacki and Janusz Sosnowski

Institute of Computer Science, Warsaw University of Technology,
ul. Nowowiejska 15/19, 00-665 Warszawa, Poland
M.Kubacki@stud.elka.pw.edu.pl, J.Sosnowski@ii.pw.edu.pl

Abstract: The paper deals with the problem of creating a
knowledge database on system dependability and resilience, created
on the basis of available system and application logs. Special tools
to collect and analyse these data from many systems have been de-
veloped. Taking into account a wide spectrum of various logs we
explore them locally and globally. This allowed for identification of
characteristics of normal operation and anomalous behaviour. A lot
of attention is paid to the problem of selecting measures to identify
symptoms characterising system operation and their usefulness in
dependability and resilience evaluation or prediction. The concepts
presented are illustrated with experience gained during monitoring
of real systems.

Keywords: dependability, data mining, event and performance
logs, resilience

1. Introduction

High dependability and system resilience are the features gaining recently much
attention in various systems (e.g., Simache and Kaaniche, 2005; Stoicescu et al.,
2011; Ye, 2008). They gave a significant impact on developing on-line system
monitoring at different levels, starting from the micro architectural to applica-
tion level (e.g., Chen et al., 2012; John, 2006; Li et al., 2012; Magalhaes and
Silva, 2011). Most systems comprise some standard monitoring tools targeted
at various events or performance parameters; which results in multitude of ded-
icated logs often with inherent unstructured data. They can be useful in char-
acterizing system operational profiles, detection and predicting their anomalies,
although this is a complex task (see, e.g. Chandola et al., 2009; Li et al., 2011;
Salfiner et al., 2010). In the literature, there are many publications devoted to
system log analysis. Usually they deal either with event (e.g. Chen et al., 2012;
Cinque et al., 2009; Naggapan and Vouk, 2010; Simache and Kaaniche, 2005)

*Submitted: July 2012; Accepted: February 2013

288 M. KUBACKI & J. SOSNOWSKI

or performance logs (e.g., Gmach et al., 2007; Hoffman et al., 2007; Ye, 2008)
and relate to specific systems or problems, so the presented results differ signif-
icantly. The methods of analysis, proposed there (coarse-grained) mostly focus
on some failure patterns and specific known target event types. In practice,
we face also the problem of extracting unknown features describing normal and
anomalous operation. This confirms the need of deeper (fine-grained) studies of
computer systems used, taking into account their operational features.

We have launched a project of monitoring computers and servers used in our
Institute. As opposed to classical approaches, we take into account simultane-
ously event, performance and other logs, moreover, we analyse them in different
time perspectives and use some data aggregation schemes. On the bases of our
previous experience (Krél and Sosnowski, 2009; Latosiniski and Sosnowski, 2012;
Sosnowski et al., 2006, 2010, 2012) with selected system availability problems
(downtimes, performance losses), we have elaborated a generalized and wide
scope methodology taking into account a large space of logged data and new
measures. In particular, we deal with the morphology and various dependencies
of logged events as well as the correlations between various log data dimensions
(neglected in the literature) and a wide spectrum of problems. The developed
analytical methodology is supported with new tools, combined with available
data mining and statistical modules. This approach facilitates tracking of symp-
toms of various anomalies and creating the relevant knowledge database.

Section 2 presents the scope of system monitoring. Sections 3 and 4 deal
with event and performance logs, respectively, and describe the methodology of
system operation characterisation using the developed tools. Section 5 discusses
integration of developed tools with the created database. Final conclusions are
given in Section 6.

2. The scope of monitoring

Dependability and resilience have become important features of many com-
puter systems. Dependability relates to such attributes as reliability, avail-
ability, safety, security, etc. Rresilient systems assure correct services despite
environmental changes, application modifications, changes of workload profiles,
etc. Various monitoring techniques can identify symptoms of failures, anoma-
lies, and operational threats which need some preventive actions (Cinque et al.,
2009; John, 2006; Li et al., 2012; Oliner and Stearley, 2007). System behaviour
can be observed from different perspectives, e.g. user, administrator, operating
system, application, etc. In the first two cases, we deal with some subjective
exploitation and evaluation remarks. Unfortunately, in practice they are rarely
logged or registered, and quite often they lead directly to some actions to elim-
inate the problem, etc. The remaining observation perspectives are usually
supported with various tools, particularly for registering the appearing events
or the pre-programmed performance measures.

Events relate to some specific and well defined situations, which are detected
in the system (Naggapan and Vouk, 2010; Sosnowski and Poleszak, 2006), and

Creating a knowledge database on system dependability and resilience 289

provide some general view on system operation. Computer systems are instru-
mented to provide various event logs on their operation. These logs comprise
huge amounts of data describing the status of system components, operational
changes related to initiation or termination of services, program updates, con-
figuration modifications, execution errors, etc. The formats of registered events
have some loosely defined general scope (Sosnowski et al., 2006, 2012; Vaarandi,
2003); in particular, we can distinguish various data fields containing specific
information in textual or numerical form with some specific brackets, etc. Some
fields can be considered to be parameters. In particular, we have the time stamp
(the time of event registering), name of the event source (e.g. disc, application
program, process identifier - PID, etc.), text describing the related event prob-
lem, severity of the problem, etc. Events generated by different sources can be
stored in common or different log files (e.g. security events specifying authori-
sation problems, user login and logout events, events generated by applications,
etc.). The included texts (usually unstructured) can be very general, of low in-
formation value, or more substantive. Nevertheless, their meaning can be better
interpreted after gathering some practical experience from many computers and
within a longer time perspective.

In most computer systems, various data on performance can be collected in
appropriate counters and according to some sampling policy, e.g. in l-minute
periods (John, 2006; Krél and Sosnowski, 2009; Ye, 2008). These counters are
correlated with performance objects such as processor, physical memory, cache,
physical or logical discs, network interfaces, server of service programs (e.g. web
services), I/O devices, etc. For each object, many counters (variables) are de-
fined characterising its operational state, usage, activities, abnormal behaviour,
performance properties, etc. Special counters related to developed applications
can also be added. All these counters provide data useful for evaluating system
dependability, predicting threats to undertake appropriate corrective actions,
etc. The list of counters, which can be configured, is very long. In the Windows-
based systems counters can be programmed for hundreds of variables (Ye, 2008).
Using these counters involves some CPU overhead, hence an important issue is
to select a representative set of measures (variables).

The primary goals of system monitoring can be identification of failures,
anomalies or their threats, evaluation of various trends (e.g. resource usage,
workload profiles), etc. These problems can be analysed from the operating
system, application or user perspectives. Here we should also consider possi-
ble environment and workload changes which may impact system behaviour.
These changes can be considered as normal trends, which should be detected
and used in upgrading and adapting the system to new challenges (resilient
systems). Recently, high complexity of hardware and software creates various
inconsistency and misconfiguration problems, which are nondeterministic and
vague in their nature. To deal with these problems we use quite sophisticated
tools and explore (locally and globally) all available logs in various observation
perspectives. Moreover, we systematically collect the knowledge on anomaly
symptoms (referenced to normal system operation) in the monitored space.

290 M. KUBACKI & J. SOSNOWSKI

3. Analysing event logs

Depending upon the goal of the log analysis (e.g. error detection and diagnosis,
finding operational profiles or trends, identifying anomalies), we are looking for
different events or their sequences. In many cases, this is reduced to a search
for a well specified event category like reboots, errors, warnings (Sosnowski
and Poleszak, 2006). In practice, we have an enormous amount of events and
insufficient knowledge on their formats and meaning, so some exploration and
data mining processing is needed. Systematic analysis is targeted at two aspects:
(i) event classification and morphology analysis; and (ii) identification of various
characteristic features in different time and space perspectives. In particular,
we can try to identify event classes. Many logs give some specification of event
type (e.g. warning, error, information) but this is a very coarse classification and
usually not precise. More precise classification can be performed with regular
expressions by defining related patterns. Here it is worth noting that application
logs may have different and unique formats (e.g. in CSV or XML). In the case
of some application logs, we can do this manually. For example, in a mail server
(Latosinski and Sosnowski, 2012) with the popular sendmail program we have
identified 52 event classes with the following type distribution: 24 - info, 18 -
notice, 2 - debug, 2 - alert, 3 - warning, 3 - error. The programs responsible
for access protocols (pop3, pop3d, pop3ds, imapd, impads) generated 27 event
classes to the mail.log and 2 classes to auth.log. Syslog and other programs
generated 61 different event classes stored in auth and security logs. It is also
useful to analyze service logs (e.g. emails generated in correlation with some
events).

To deal with any event logs, we have developed a hierarchical classifica-
tion algorithm which identifies static and variable (parameter) fields within log
lines that can be applied to preprocess log entries with partial generalizations
introduced by regular expressions. This classification is supported with event
message analysis. For this purpose, we use some text mining techniques (ab-
stracting events with semantic similarities, checking word frequencies, positions
and contexts). Having identified parameters (variables) in the logs, we can also
recognize their types, e.g. I/O port, file path, web links and include them in
the abstracted event patterns (Sosnowski et al., 2012). This technique surpasses
the typical log abstraction approaches (Naggapan and Vouk, 2010) restricted to
identification of variable data fields and is simpler than clustering approaches
(e.g. Fu et al., 2009, 2012; Vaarandi, 2003). When analyzing logs for vari-
ous computer platforms (Windows, Linux) and systems (laptops, workstations,
servers and a cluster system), we have gained some knowledge on event morphol-
ogy, dependencies and significance. Using this technique in a cluster subsystem
composed of 30 nodes (with Linux), we have started with 248 368 syslog raw
events (excluding cron) related to 4 months period. By abstracting the time
stamp and PID (replaced by wildcard (*)), we have got 117 294 different events.
Upon applying to this reduced set our algorithm, we got 12 624 event classes,
and by abstracting nodes we got 5 197 classes. Further refinements resulted in

Creating a knowledge database on system dependability and resilience 291

5 589 and 383 event classes, depending upon the algorithm used (Sosnowski et
al., 2012). The analysed log comprised 2 502 073 words (some included digits
and other special symbols); within this set we have detected 116 213 unique
words, among them 981 words, which do not comprise digit characters. The
number of different word positions in the message field was up to 25. These
numbers reflect the data mining complexity.

For some selected computers running under Windows, we have got about
300 000 events in the application logs which have been classified into 141 event
classes. This classification was a little bit easier than for the Linux systems,
due to unique specification of event sources and event IDs in logs. Nevertheless,
the text mining was not trivial. For example, in a computer with over 44 000
application events we got 1 571 different words (the total of 710 964 words).
Quite frequent words were “error” in English, 14 041, and its equivalent in
Polish (“blad”) — 11 826, “updating” — 11 337, whereas potentially critical
events comprising “failed” and “failure” corresponded to 14 and 3 cases. Logs
with “error” word in most cases were not critical, more critical were logs with
terms “not able”, “unsuccessful”. For the system log, we got 739 different words
within a total of 447 212 words, which can be correlated with some problems,
e.g. related to performance, service, and software actualization. Such semantic
analysis is helpful in searching interesting events in a wide search space. It can
be enhanced with checking links within messages or service logs.

Obviously, it is difficult to trace logs manually. On the one hand, we have
different types of events, sometimes with some parameters of more or less impor-
tant value. On the other hand, it is important to know the source of event, its
location in time and space (e.g. node number). So, in the analysis we are inter-
ested in event profiles, various statistics of global or filtered event sets (according
to various attributes), raw or preprocessed (normalized) events, abstracted (clas-
sified with regular expressions) events, etc. It is reasonable to identify frequent
(dominating) events - crossing a specified support threshold (Vaarandi, 2004),
critical events (characterizing known problems), emerging events (rarely reoc-
curring events) and jumping events (new and suspected). For this purpose, we
have developed ELogAnalyser and some other supplementary tools. They use
special agents installed in the monitored systems, which fill up the associated
database. This assures parallel monitoring and analyzing many computers or
nodes in a cluster.

Having analysed the morphology of event logs (including event classification
- abstraction), we can perform more detailed studies to identify critical, anoma-
lous states or to find the characteristics of the operational profile. This process
is supported with appropriate visualization tools. In the developed ELogAnal-
yser, we have the possibility of visualizing events in various time perspectives,
filtered (e.g. based on regular expressions) or aggregated. For example, hour,
daily or monthly perspectives show event distribution over the related subse-
quent time periods (events are summarized within these periods). Aggregated
hour views show distribution of events within 24 hours, for each hour we sum
all events of this hour for each day of the considered period. Similarly, we can

292 M. KUBACKI & J. SOSNOWSKI

generate aggregated daily distribution over all week days (summarized events
for each week day over the considered period). Aggregated distributions show
activity profiles (or trends) during day and night hours, week days (e.g. low
activity on weekends) or months.

The generated distributions can be limited to specified event classes (e.g.
errors, warnings) or unique events. Moreover, they can be presented for indi-
vidual computers/ nodes (on single or independent plots) or summarized over
a selected group of nodes, etc. For illustration, in Fig. 1 we give some plots
related to a cluster subsystem (Sosnowski et al., 2012). Fig. la gives the dis-
tribution of NTP (Network Time Protocol) synchronization actions within one
month for some set (space) of nodes. It shows different clock stability in nodes,
for some of them more actions have been activated, 10 days of no activity re-
lated to the period of switched-off NTP server. Fig. 1b shows problems with
the file system over several nodes. The first and the third high value pulses refer
to a disc array problem, the second one is related only to 3 nodes and was a
local problem. Figs. 1c and 1d show the aggregated distribution of all errors in
individual nodes (weekly perspective) and summarized over all nodes (day hour
perspective), respectively (the aggregation process takes results for about 100
days). Here, low activity is visible for weekends and night hours.

a) x-axis: 0-30 days, y-axis: 0-95 events b) x-axis: 0-32 days, y-axis:0-42 events

;’ z\r‘ R IMVN)l\ A A

] 1 A 11

|t
| =

¢) x- axis: Mon-Sun, y-axis: 0-361 events | d) x- axis:0- 23h, y-axis: 0-1700 events

Figure 1. Event distributions: a) synchronization events for individual nodes, b)
file system errors, ¢) weekly profile of all errors for individual nodes, d) hourly
profile of errors over all nodes

An important issue is tracing distribution of events in time and space as well
as their correlations. We have analyzed distribution of times between events,
distribution of the number of registered events in specified time periods. For
example, in a laptop we have registered 42 333 (within 2 years) application

Creating a knowledge database on system dependability and resilience 293

events (25 656 errors, 400 warnings, 16 277 specified as information). For 15 810
sampling periods (1s), we have identified at least one event, more than 14 790
periods comprised 1-4 events, 977 comprised 5-15 events, and 97 more than
16 events, the maximum number was 74. Taking into account the fact that
on average we have about 20 events per day, which are concentrated within
working hours, we get on average 20 events per 4 hours of system operation.
Events followed by another event within 2 seconds contributed 31 000 events.
Hence, bursts of events can relate to some specific situations, in particular we
have got 15 samples with more than 30 events (in one second); such cases are
worth deeper analysis and correlations with other logs.

Event distribution and event sequences need special attention. We have
analysed distribution of events, their pairs and longer sequences. We have con-
sidered event classes specified with the source and ID number. To illustrate the
significance of this analysis we give some results for one computer. We have got
42 different sources and 152 different event IDs within the computer application
logs, which resulted in 219 different event classes. The total number of event
pairs was 42 332, of which only 1 305 were different. Deeper analysis showed 207
pairs with at least 0.5 confidences (the probability that the first element implies
the second one). The pair <Application error 1000, error report 1001> had
confidence 0.86. There were several pairs with confidence 1.0 related mostly
to checking program licences or rollbacks. For many (536) pairs, the support
(number of appearance) was only 1, for 242 pairs the support was over 10, within
this 2 pairs with support exceeding 10 000 and 30 exceeding 150. Event pairs
can be visualized as a graph with nodes related to each event class and edges
corresponding to event pairs. On average, each event was followed by one of
5.3 different events. An event was a predecessor of maximally 43 (node fan-out)
other events and the successor of maximally 39 events (node fan-in). We have
also identified some longer unique event sequences (4-12 events), e.g. related
to checking software licences/program originality, successful or unsuccessful up-
dates. These observations confirm some regularities in logs and relatively high
event correlations. This feature also appeared in other logs and computers. For
example, for the considered computer the number of different event pairs in sys-
log was only 287. For another computer with lower number of used applications,
we have got 191 and 88 different event pairs for applications and system logs,
respectively.

Distribution, support and confidence of event pairs are some characteristics
of operational profiles. Changes in these profiles, especially appearance of some
new event pairs (e.g. caused by some attempts of attacks) or unexpected ones
(e.g. comprising restarts), are worth deeper analysis. Appearance of new events
or pairs can be attributed to profile changes (e.g. new applications) or to some
anomalies. Similarly, we can interpret disappearance of some events, pairs or
sequences. Correlations between events of different logs (global perspective)
were in general weaker than within single logs (local perspective). However,
higher level correlations can also be identified, like those related to different users
within the considered computer (correlation with last log giving information on

294 M. KUBACKI & J. SOSNOWSKI

logins and logouts) or with times of different student courses within student
laboratory computers. We have identified some errors mostly triggered by a
small group of students e.g. related to pen drive usage (incorrect disconnections
or any read errors due to device incompatibility) or unauthorised access tries.
Some users were correlated with higher number of errors resulting from their
superficial knowledge of applications, etc. An important issue in this analysis
is presentation of events in different perspectives with the capability of various
filtering and aggregating features assured by the developed tool.

4. Analysing performance logs

When analyzing performance parameters we investigate their behavior in time,
explore distribution of their values, check correlations between different pa-
rameters, etc. For this purpose, we can use appropriate statistical and data
mining tools, in particular the specially developed tool EPLogAnalyser and the
IBM SPSS Modeller. Using SPSS we have designed appropriate scenarios of
data analysis. We have concentrated on three scenarios: auditing the collected
data (DA), finding performance models (PM), and finding time series prediction
models (TPA).

For each scenario, we have configured in SPSS an appropriate scheme of data
flow and processing (composed of selected standard components and connections
between them). The DA scenario allowed us to derive statistical properties of
the collected data samples for each performance variable as well as correlations
between different variables. Table 1 provides a sample of statistics of some ap-
plication. They include the following variables: CPU usage in percent (CPU),
memory utilization in MBytes (total - MU, for applications - MUA, for swaps
- MUS), disc activity (the number of disc read blocks - DiscR, the number of
disc written blocks — DiscW), CPU average load (LAv - average length of the
process queue), the number of received (NRB) and sent (NSB) bytes in Ethernet
network. Usually, we generate statistics (minimal, maximal, average, median,
dominant values, standard deviation, standard error of the average value, etc.)
of raw data and then perform some refinement. In particular, we can reject sam-
ples exceeding some specified multiple of standard deviation or filter improbable
values (e.g. due to measurement faults) or delete samples related to some spe-
cific states (e.g. system maintenance actions, reconfigurations). The statistics of
maximal (Max), average (Av1l) and standard deviation (Dev) in Table 1 relate
to refined data (after deleting from the raw data samples with values exceeding
5 times the standard deviation). To show the impact of this refinement, in col-
umn Av2 we give average values of the raw data and in columns Ex1 and Ex2
the number of samples exceeding 3 and 5 times the standard deviation. The
total number of samples for each variable was about 150 000 (sampling rate 1
minute). On the basis of the refined data we have generated Pearson correlation
factors (Hill and Lewicki, 2006) between the analyzed variables. They are given
in Table 2.

In practice, auditing the collected data allows us to select the most interest-

Creating a knowledge database on system dependability and resilience

295

Table 1.

Statistics of selected performance measures

Max Avl Av2 Dev Er1 Ezx2
CPU 79.3 8.18 8.18 8.986 1768 77
DiscR | 24128 912.5 2194.333 3496.629 | 0 1
DiscW | 32184 7081.68 7208.801 4924.037 | 4717 309
LAv 2.558 0.23 0.23 0.27 3275 274
MU 1345 1217.405 1819.27 125.374 1 84
MUA 1245.6 860.805 924.86/ 173.488 102 0
MUS 3032 305.976 332.686 131.5 6 285
NRB 1517559 | 12419.463 13810.743 27986.337| 63 354
NRW 832365 13445.785 16272.712 30615.427| 14 106

Table 2. Pearson correlation coefficients for the analyzed performance variables

CPU | DiscR | DiscW| LAv MU MUA | MUS | NRB | NSB
CPU | - 0.530 | 0.719 | 0.544 | 0.260 | 0.251 | -.001 | 0.887 | 0.848
DiscR | 0.530 | - 0.764 | 0.476 | 0.192 | 0.188 | 0.013 | 0.249 | 0.233
DiscW| 0.719 | 0.764 | - 0.513 | 0.229 | 0.215 | 0.021 | 0.600 | 0.601
LAv 0.544 | 0.476 | 0.513 | - 0.291 | 0.286 | -.015 | 0.411 | 0.398
MU 0.260 | 0.192 | 0.229 | 0.291 | - 0.846 | 0.012 | 0.201 | 0.192
MUA | 0.251 | 0.188 | 0.215 | 0.286 | 0.846 | - 0.025 | 0.190 | 0.179
MUS | -.001 | 0.013 | 0.021 | -.015 | 0.012 | 0.025 | - -.042 | -.051
NRB | 0.887 | 0.249 | 0.600 | 0.411 | 0.201 | 0.190 | -.042 | - 0.931
NRW | 0.848 | 0.233 | 0.601 | 0.398 | 0.192 | 0.179 | -.051 | 0.931 | -

296 M. KUBACKI & J. SOSNOWSKI

ing performance parameters and reject those of lower interest, e.g. not showing
fluctuations of values. Moreover, we can optimize the set of parameters by re-
ducing those which are highly correlated (e.g. 99%). This is an important issue,
because the list of possible variables could be very long (Sosnowski and Krol,
2010; Ye, 2008).

The goal of PM scenario is to find a model of predicting the value of a se-
lected performance variable in the function of other variables. Within SPSS (see
IBM, 2011), we have many available methods to generate such models for the
collected data, e.g. linear regression, decision trees, neural networks, C&R trees
(classification and regression trees), KNN (k nearest neighbor). We have con-
centrated on finding such models for CPU usage. For the considered application,
we obtained very good models (based on 50% of raw data — the training sets)
with correlation factors in the range from 0.940 to 0.972 and relative errors in
the range 0.056-0.117. Getting such results needed appropriate configuration of
the generators (selection of appropriate coefficients and constants). It is worth
noting that the C&R model is quite intuitive, as it generates a tree which gives
some idea on interpreting dependencies among variables. For the considered
example, we have got a tree with depth 5, 19 nodes and 8 leaves, on the basis
of 30% raw data samples.

For another project, we have found some fluctuation of basic statistics and
Pearson coefficients for subsequent months. The derived SPSS prediction model
for CPU load average based on data from 6 months showed higher error (0.48)
and lower correlation (0.718). This was caused by monthly fluctuations of Pear-
son correlation coefficients related to CPU usage (0.7-0.8) and disc operations
(0.23-0.49). In the previously analyzed system higher stability was observed.
Moreover, the CPU usage models are usually more accurate than those of CPU
load. Taking into account fluctuations of some variables in time we have con-
structed also models with an additional time variable. Quite good results were
obtained using such variable with periodicity 24 hours, taking into account
higher system activity during working hours and days.

a) sampling period 1 minute b) sampling period 5 minutes

Figure 2. Example of LAv prediction with time series (x-axis range: 18.45-19.00)

Creating a knowledge database on system dependability and resilience 297

TPA modeling is targeted at tracing the behavior of performance parameters
in time and predicting their future behavior. This is a good approach to iden-
tify some features of normal operation, in particular, various periodic activities
related to backups, program updates, etc. However, while using standard SPSS
time series functionality we have encountered some prediction accuracy prob-
lems, as illustrated in Fig. 2. The predicted values of CPU load average (LAv)
relate to the plotted line (derived from 15 days data). The 95% confidence
range of predicted values (dashed area in Fig. 2) was consistent with the real
values (dark dots), but the prediction of periodicity was problematic. Detection
of periodical fluctuations (15 minutes period) depended upon the sampling pe-
riod: it was skipped for 1 minute sampling period and predicted for 15 minutes
sampling period (Fig. 2b — the two final pulses predicted).

Better results were obtained with the models used for checking correlations
between variables (specified in Table 2). In this case, we used the CPU load
average variable and correlated it with the time variable. For the considered
application, the highest correlation coefficient was obtained for the KNN model
(0.829), although the relative error was quite high (0.568). The problem with
high relative error resulted from some time shift of the predicted and real plots.
In fact this is not critical and we have developed another quality measure ad-
mitting some time shift (of pulses) and taking into account the integrated values
of the real and predicted pulses.

Another interesting issue is the behavior of performance measures in time.
This can be done in different time perspectives with different granularity and
aggregations rules (similarly as for event logs — see Section 3). When looking
for specific patterns, we can distinguish some general properties such as average
values, fluctuation ranges, and negative or positive pulses, their frequency, time
positions, distribution in amplitude, distribution in time, etc. It is worth noting
that some patterns relate to specific system activities like backup processes,
program updates, monitoring processes, administrator audits (with more or less
regular scenarios).

Fig. 3a shows CPU usage (up to 47%) of a complex security monitoring
program (SOA — service oriented architecture) within one node of a cluster
system with averaged values for hours (lower plot relates to load average with
values from 0 to 8). The visible pulses closely relate to the task scheduling
(task duration is about 5h). Such characteristic of correct operation was not
easy to detect in plots with higher resolution (e.g. 1 minute). To deal with
higher resolution data, it is sometimes helpful to use compacted plots. This
is illustrated in Fig. 3b, which shows average (horizontal line), maximal and
minimal values (specified by the vertical line) of disc write operations within
compacted time periods related to 20 samples (each of 1 s). Fig. 3c shows a
daily perspective (the period of 12 days) of sent out bytes (samples with average
values over 30 minutes) with visible weekend low value and an abnormal peak
caused by an uncontrolled burst of emails. In weekly and monthly perspectives,
we use average sample values over 2 hours and 1 day, respectively, which allows
us to identify some regularities and trends. For instance, the monthly plot in

298 M. KUBACKI & J. SOSNOWSKI

a) CPU usage (y axis: 0-48) - one hour res- | b) Disc write operations — compacted plot

olution

Ak LT

M
T f Al
T
I
ML A A VA ™

10 |

¢) Daily perspective of transmitted bytes d) Monthly perspective of disc and network
activities

nnnnnn

DDDDDD 150 R — — h'lr

nnnnnn

nnnnnn 00 H= " =0u === «ln

DDDDDD _ - L) -

uuuuuu 50 __TT_‘_-,_-:__.'—_'—__. ==

nnnnnn .

uuuuuu

nnnnnn N O AR o N O B A N h.ﬂx h hll‘ February March April May
o PP L VWL L

Figure 3. Visualization of performance parameters in different time perspectives

Creating a knowledge database on system dependability and resilience 299

Fig. 3d shows systematically growing activity of a disc (W — write, R — read
operations) and interconnections (Ou - sent out, In - received bytes) in a newly
installed data repository system (trends of increasing user interest and adding
new data).

Depending upon the application benchmark running in the analyzed system
we may have different performance characteristics which can change within a
single application, e.g. if there are well defined periods of heavy calculations
and burst disc operations. We have found that in general it is reasonable to
analyze performance time dependencies in correlation with event logs (compare
Section 5). By analyzing performance plots, we can try to identify their models
and predict their behavior for some future period to check if the real behavior
differs significantly (warning situation to trigger more accurate analysis and
monitoring) or to identify some lacking patterns (e.g. skipped backups or their
time skews).

5. Combining event and performance analysis

In the process of identifying normal system operation features, their trends and
anomalous or suspected situations, we use various monitoring schemes involving
event logs (console logs, application logs, security logs, etc.) and performance
logs. All these mechanisms are usually available on the system platform or
are incorporated into applications. In some domains, they can be enhanced
with traces of user or environment interaction with the system. Some of these
activities relate to backups, maintenance actions (planned and unplanned), sys-
tem restarts, unauthorized accesses of other users, etc. They could be helpful
in revealing system anomalies. A specific anomalous case is non-professional
application usage resulting in lowering of its performance, generating exces-
sive memory or processor usage. This can result from low user qualification
or his/her unconsciousness of possible problems. Such observations can draw
attention of responsible authorities to organize special courses to the users, etc.

In general, depending upon the application, we have different available data,
different possibilities of anomaly classes and severities. In the process of analy-
sis, we can use various statistical techniques or advanced data mining and data
exploration approaches (e.g., Brandt et al., 2008; Li et al., 2011; Salfiner and
Malek, 2007) which can be supplemented with some measures related to infor-
mation theory, spectral analysis, statistical properties, etc. Taking into account
some vagueness of qualification results, it may be also reasonable to use fuzzy
sets or rough set theory.

It is important to get long term experience by monitoring event logs for
longer periods and on different hardware and software platforms. This monitor-
ing should be correlated with systematic user and administrator observations,
their reports on operation anomalies, occurring system crashes, power black-
outs, network disconnections, system overloading, or other problems. All these
situations should be described and registered in some special repository, so that
they can be confronted with collected logs at the time of problem appearance or

300 M. KUBACKI & J. SOSNOWSKI

in a postponed log analysis. Unfortunately, it is difficult to base on experience
published in the literature, which usually is targeted at some unique problems,
specific workloads, etc. Moreover, in the available literature (compare Section
1), the authors publish aggregated statistical results, so the important detailed
knowledge on problem uncovering or manifestation is not at all available or only
partially.

Having checked the collected logs from many computers, we can state that
the number of registered events is quite high even in systems with low activity.
In most cases, the system usually operates correctly, so identifying critical or
warning situations could be to some extent problematic. Only some events are
critical, on the other hand some event sequences should be correlated taking
into account performance measures, workload profiles, user sessions, etc. More-
over, we may have various time dependencies, e.g. regular program updates,
backups and clock synchronisations, different usage profiles in week days, in
day hours, etc. Hence, we have decided to create a common database for event
and performance logs to facilitate tracing abnormal or normal situations. Some
parameters are stored in an aggregated form: average, maximal, minimal val-
ues, difference from the previous sample, etc. This database is used by the
developed analysis tools (described in Sections 3 and 4) which are integrated in
the EPLogAnalyser system.

The EPLogAnalyzer database consists of 10 tables (Fig. 4). CONFIG table
keeps several global settings concerning the tool. All event log files imported
into EPLogAnalyzer have a record in FILES table. Log files can be imported
either from local disk or remotely from an agent. In the latter case, each file
has an ID of an agent, from which data has been imported, and the access path.
Each file consists of log entries stored in LOG_ENTRIES table which keeps all
of the event log data records and is the second largest table in the database. To
speed up ”select” statements, each log entry has additional relationship with
AGENTS table. AGENTS table contains connection details (port) and infor-
mation about time of last performance data transfer, current performance data
collection timestamp and the measure definition version. In EPLogAnalyzer,
a user is able to define the format of the log file as a set of regular expres-
sions. LOG_FORMATS table keeps only basic information like the name of
the log format. Specific information for each field in the log file is kept in the
LOG_FORMAT_FIELDS. This table defines a set of expressions that are used
to parse the text form of the log file and to convert it into a tabular form. Typ-
ically, it is either a text specified by a regular expression (e.g. host name, PID,
text message) or a date time field (using Qt framework date/time expressions).
Each FILE entry must have a corresponding LOG_FORMAT record to properly
import the file into EPLogAnalyzer.

EVENTS table comprises events (defined by the user) for filtering data for
the analysis. Each event can be associated with only one log format. An event
is defined as a set of conditions on each log format field. These conditions
are kept in the EVENT_CONDITIONS table. They facilitate tracing various
properties like distribution of log data on weekdays or day hours. Each event

Creating a knowledge database on system dependability and resilience 301

| HB MEASURE_wALUES Eo—|—| MR MEASURES | | BB COMFIG

=] ERFILES =

BB LOG_FORMATS

R EVEMT _COMDITICNS b{)—'—' EFH LOG_FORMAT_FIELDS |

Figure 4. Structure of the EPLogAnalyser database

has exactly one event condition for each log format field (of the associated log
format). For a regular expression field of the log entry the condition specifies an
expression (pattern) that has to be matched with its contents (e.g. to select a
log comprising word “error” or a host name). In the case of date/time fields the
specified conditions must be matched for the whole log entry (e.g. month, week
day, date range). All conditions defined for a specific record in the EVENT
table must be matched in order to treat the particular (selected) log entry as
an instance of the user defined event.

From the performance point of view, the most important tables are: MEA-
SURES - which keeps measure definitions and MEASURE_VALUES - which is
typically the biggest table in the database. The latter consists of maximum M x
S records, where M is the number of measures (parameters) defined and S is the
number of samples collected. For example, collecting data every minute gives
24 x 60 = 1440 samples per day for each measure and agent. When data is be-
ing retrieved by EPLogAnalyzer, sophisticated SELECT statement transposes
MEASURE_VALUES table. To speed up this process, appropriate indexes have
been created.

The analytical environment of EPLogAnalyzer is specified by all tables ex-
cept LOG_ENTRIES and MEASURE_VALUES. In particular, it involves the
list of files that have been imported, log formats, events, measures and agents
defined by the user. These are typically small tables that are read during appli-
cation startup and modified only, when the user changes application settings,
e.g. adds a new agent or modifies a measure definition. LOG_ENTRIES and
MEASURE_VALUES tables are read on demand during the analysis phase,
using complex SELECT statements generated dynamically by the EPLogAn-
alyzer in relevance to the analysis settings. These tables are modified during
data import phase, either via file import or by download of data collected by
the agent.

The collected information in the database allows us to get better knowledge

302 M. KUBACKI & J. SOSNOWSKI

on system behaviour and possible anomalies, some of which are characterized
by known critical events, whereas others relate to wider contexts. Hence, in our
approach we usually specify conditions (AC) of possible anomalies in space of
performance measures (e.g. CPU usage) or functional properties (e.g. a sus-
pended service). Then, we check recorded events in a pre-programmed time
window (A) just before the occurrence of AC. This allows us to identify anoma-
lous symptoms with appropriate level of confidence defined as follows:

Confidence(LE—AC) = Support(LE—AC)/Support(LE) where: LE - event

log entry pattern, AC - the specified measurement condition (e.g. CPU usage >x
%), Support (LE) - the number of all events LE in the considered time period,
Support(LE—AC) - the number of LE events followed by condition AC (the
maximal correlation window time A is also programmed - typically 1 minute).

Simple events can also be replaced by some sequence of events. Similarly,
we can use more complex AC conditions like taking into account duration of
excessive parameter value or a burst of such pulses. In this approach, an im-
portant issue is specification of event patterns in some universal way (so called
event abstraction — skipping of some irrelevant details in the event, e.g. time
stamp, process ID). For this purpose we use regular expressions. This process
can be supported with event filtering in time and space (to eliminate redun-
dancy); a single problem may generate many events (by various objects) within
some short time.

The developed system has been used to collect, explore and analyse logs
from various computers in order to create knowledge database on possible prob-
lems and their symptoms. Here, we can distinguish known critical problems
(CP), suspected situations (SS) and unknown problems (UP). In the case of
CP, we know the critical events. Sometimes they are identified by some specific
sequences, in more complex situations they should be correlated with some con-
text (e.g. specific configuration of an application, workload and usage profiles).
The list of these symptoms and related problems is systematically updated as
long as we gain new experience within the monitored systems. In the case of
SS and UP situations, we rely on some learning processes combined with mon-
itoring. The main idea is to identify characteristics of normal operation, its
correlation with environment and operational profile changes and next selecting
suspicious deviations for deeper analysis. These deviations are formulated for
various performance measures or event log files. Moreover, in our approach we
can study various correlations and identify their level of confidence.

An important issue is to distinguish normal and anomalous deviations in
the observed performance and event spaces. Most of normal deviations relate
to periodic activations of system scripts, program updates, backups, etc., and
can be identified using statistics and tracing automatically shapes of plots in
EPLogAnalyzer or SPSS (Section 4). Having eliminated normal deviations,
we can explore the remaining ones in more detail. In the sequel, we present

Creating a knowledge database on system dependability and resilience 303

some illustrative examples. Observing CPU usage (in per cent) typically, we
detect various fluctuations and spikes of its appearance. It is worth tracing
their sources. We can select all events registered in some specified time window
before the specified level of CPU usage increase or a spike and then check the
support measure for various selected events. In most cases this correlates with
initiated specific scripts (reported in logs), although it may relate also to some
anomalies.

a) CPU usage (A); y axis: [0,100%) b) CPU usage (B) — fine grained; y
axis: [0,35.7%]

¢) CPU queue length (system A); y | d) CPU usage (B)- course grained; y
axis: [0,1.9] axis: [0,12.1%]

{1733
. M

Figure 5. Sample of anomalous plots of selected performance measures for
system A and B (x-axis time scale specifies subsequent minutes for a, b, ¢ and
hours for d)

For instance, CPU usage in the monitored system A was in the range of
few per cent, sometimes rising to 20%, but 100% usage was also observed for
about 20 minutes each week. This spike is shown in Fig. 5a. The corresponding
average system load (average CPU queue length) is less regular (Fig. 5¢). But,
correlating this spike with event logs, we have confirmed with 100% confidence
that it was invoked by a specific system script (normal deviation). In the case
of system B, we have identified average CPU usage 8-12% with some spikes
(over 30%) appearing quite frequently - about once per 15 minutes. They were
correlated with some scripts capturing screen images. In Fig. 5b (resolution
of 1 minute), we see some small increase at the basement of the second spike,

304 M. KUBACKI & J. SOSNOWSKI

which can be easily skipped by the observer. Looking at this in a wider time
perspective, covering 30 hours in Fig. 5d, where each point shows average CPU
usage per 1 hour, we see increased average CPU usage from 8 to about 12% for
almost 24 hours. This anomaly has been correlated with some sequence of events
in the security log: there were 250 000 events related to attempts of logging as
an administrator with different user names and passwords corresponding to
an external brute force attack, fortunately unsuccessful. Practically, all these
events were different (in the field of user name and password), but they have been
described with a common generalized event pattern using a regular expression
(support confidence 100%).

In general, depending upon the specified condition CA, we can get more than
one correlated event pattern. In one of the monitored systems, the average CPU
usage was in the range of 8-12% with some spikes of higher values. By specifying
CA condition as CPU>30%, we have got 316 different events preceding this
condition, which were generalized (with regular expressions) to 34 patterns.
For each of these patterns, we have calculated support and confidence values as
well as minimal, maximal and average CPU usage levels. For two patterns, we
have got 100% support confidence with average 95% CPU usage, for the third
pattern the support confidence was 83% (average CPU usage 35%). Actually,
they were related to some activities invoked by system scripts. It is interesting
that sometimes we got no symptoms of problems in event or performance space,
but the problems were identified by the users (e.g. incompatibility of pen drives
or remote discs). Such situations should be reported in an additional user log
file to improve system logs in the future.

We have faced also the problem of selecting appropriate variables for obser-
vation. For instance, in Fig. 5 we have plots of CPU usage and CPU queues
for the same time period. The plot of the queue length is less regular and
more difficult for analysis, the anomaly of Fig. ba was sufficient to identify the
symptom of the problem. This analysis becomes more complex in multiproces-
sor and clusters systems, where the correlations between nodes performing the
same services must also be taken into account (compare Fig. 1).

6. Conclusions

The main contribution of our research is the developed integrated event and per-
formance log analysis supported by the original database with advanced filtering
and visualization functions. This approach takes into account many detailed fea-
tures which extend the scope of system operation evaluation. When analysing
event logs we base on event categorisation (event morphology, identification of
parameter fields, etc.) and various statistics, including event sequences. In
this process, we use regular expressions and some data mining algorithms. The
multitude of possible performance parameters gives the possibility of detailed
system tracing. It is important to select the most sensitive and representative
variables to avoid system load disturbance. The developed tools with the inte-
grated database facilitate these processes. Moreover, the included wide scope

Creating a knowledge database on system dependability and resilience 305

of features allows tracing anomalies by checking correlations of event and per-
formance logs. Here, we can deal with explicit events or their classes.

An important characteristic of our approach is the fine-grained data anal-
ysis taking into account different perspectives (local, global, time, space and
problem manifestation). Event sequences and rules (ranked according to their
support values), discovered in this way, contribute to the developed knowledge
database useful in resolving dependability and resilience problems. The devel-
oped methodology has been verified in real systems and facilitated detecting and
diagnosing various types of anomalies (HW, SW, administrator, configuration
faults, user deficiencies, system downtimes, slowdowns, performance anomalies,
HW /SW inconsistencies, external attacks, etc.).

Taking into account the complexity of the problem we must be conscious that
the results of analysis may provide false alarms or skip some problems. Hence, an
important issue is cooperation with system administrators or users to interpret
suspicious situations (interactive and iterative exploration of problems). This
experience will enhance the rules of reasoning.

Further research will concentrate on some improvement of generating log
schemes (e.g. in applications) and event categorization with advanced data
mining algorithms. In developing problem prediction schemes (see, e.g. Li
et al., 2011; Salfiner et al., 2010) we will take into account also performance
parameters supplemented with user and service reports. This will result in
better characterisation of normal as well as abnormal system behaviour.

References

BRANDT J., DEBUSSCHERE B., GENTILE A., MAYO, J. and PEBAY
P. (2008) Using probabilistic characterization to reduce runtime faults in
HPC systems. Proc. 8th IEEE Int. Symposium on Cluster Computing
and the Grid. IEEE Computer Society, 759-764.

CHANDOLA V., BAERJEE A. and KUMAR V. (2009) Anomaly detection:
A survey. ACM Computing Surveys, 41, 3, 15.1-15.58.

CHEN CH., SINGH N. and YAJNIK M. (2012) Log analytics for dependable
enterprise telephony. Proc. of 9" IEEE European Dependable Computing
Conference. IEEE Computer Society, 94-101.

CINQUE M., COTRONEO D. and PECCHIA A. (2009) A logging approach
for effective dependability evaluation of computer systems. Proc. of 2™?
IEEE Int. Conf. on Dependability. IEEE Computer Society, 105-110.

FU Q., LOU J-G., WANG Y. and LI, J. (2009) Execution anomaly detection
in distributed systems through unstructured log analysis. Proc. of IEEE
Conference on Data Mining. IEEE Computer Society, 149-158.

FU X., REBN R., JIANFENG Z., WEI Z., ZHEN J. and GANG L. (2012)
LogMaster: mining event correlations in logs of large-scale cluster sys-
tems. Proc. of IEEE Symposium on Reliable Distributed Systems. IEEE
Computer Society, 71-80.

306 M. KUBACKI & J. SOSNOWSKI

GMACH D., ROLIA J., CHERKASOVA L. and KEMPER A. (2007) Workload
analysis and demand prediction of enterprise data center applications.
Proc. of 10" IEEE Int. Symposium on IISWC. IEEE Computer Society,
171-180.

HILL T. and LEWICKI P. (2006) Statistics: Methods and applications, A
comprehensive reference for science, industry and data mining. StatSoft,
Inc.

HOFFMANN G. A., TRIVEDI K.S. and MALEK M. (2007) A best practice
guide to resources forecasting for the Apache Webserver. IEEE Transac-
tions on Reliability, 56, 4, 615-628.

IBM (2011) IBM SPSS Modeler 14.2, Algorithms guide ftp://ftp.software.
ibm.com/software/ analytics/spss/documentation/modeler/14.2/en/ Al-
gorithmsGuide.pdf

JOHN L. K. and EECKHOUT L. (2006) Performance Evaluation and Bench-
marking. CRC Press.

KROL M. and SOSNOWSKI J. (2009) Multidimensional monitoring of com-
puter systems. Proc. of IEEE Symp. and Workshops on Ubiquitous,
Autonomic and Trusted Computing. IEEE Computer Society, 68-74.

LATOSINSKI P. and SOSNOWSKI J. (2012) Monitoring dependability of a
mail server. Electrical Review, 88, 10b, 223-226.

LI X., XUE Y. and MALIN B. (2012) Detecting anomalous user behaviors
in Workflow-Driven Web applications. IEEE Symposium on Reliable Dis-
tributed Systems. IEEE Computer Society, 1-10.

LIY., ZHENG Z. and LAN Z. (2011) Practical online failure prediction for
Blue Gene/P: Period-based vs. Event-driven. Proc. of the IEEE/IFIP In-
ternational Conference on Dependable Systems and Networks Workshops.
IEEE Computer Society, 259-264.

MAGALHAES J. P. and SILVA L.M. (2011) Adaptive profiling for root-cause
analysis of performance anomalies in Web based applications. Proc. of
IEEFE International Symposium on Network Computing and Applications.
IEEE Computer Society, 171-178.

NAGGAPAN M. and VOUK M. A. (2010) Abstracting log lines to log event
types for mining software system logs. Proc. of Mining Software Reposi-
tories (Co-Located with ICSE 2010). IEEE Computer Society, 114-117.

OLINER A. and STEARLEY J. (2007) What supercomputers say: A study of
five system logs. Proc. of the IEEE/IFIP Intern. Conference on Depend-
able Systems and Networks. IEEE Computer Society, 575-584.

SALFINER F., LENK M. and MALEK M. (2010) A survey of failure prediction
methods. ACM Computing Surveys, 42, 3, March, 10.1-10.42.

SALFINER F. and MALEK M. (2007) Using hidden semi-Markov models for
effective online failure prediction. Proc. of 26" IEEE Int. Symposium
on Reliable Distributed Systems. IEEE Computer Society, 161-174.

SIMACHE C. and KAANICHE M. (2005) Availability assessment of SunOS/
Solaris Unix systems based on syslog and wtmpx log files; a case study.
Proc. of IEEE PRDC Conference. IEEE Computer Society, 49-56.

Creating a knowledge database on system dependability and resilience 307

SOSNOWSKI J. and POLESZAK M. (2006) On-line monitoring of computer
systems. Proc. of IEEE DELTA Workshop. IEEE Computer Society,
327-331.

SOSNOWSKI J. and KROL M. (2010) Dependability evaluation based on
system monitoring. In: A. Al-Dahoud, ed., Computer Intelligence and
Modern Heuristics. In-Tech, 331-348.

SOSNOWSKI J., KUBACKI M. and KRAWCZYK H. (2012) Monitoring event
logs within a cluster system. In: W. Zamojski et al., eds., Complex Sys-
tems and Dependability. Advances in Intelligent and Soft Computing, 170.
Springer, 259-271.

STOICESCU M., FABRE J. and ROY M. (2011) Architecting resilient com-
puting systems: overall approach and open issues. In: E. A. Troubitsyna,
ed., Proc. of SERENE 2011 Conference. LNCS 6968, Springer, 48-62.

VAARANDI R. (2003) A data clustering algorithm for mining patterns from
event logs. Proc. of 3¢ IEEE Workshop on IP operations and Manage-
ment. IEEE Computer Society, 119-126.

VAARANDI R. (2004) A breadth-first algorithm for mining frequent patterns
from event logs. INTELLCOMM 2004, LNCS 3283, Springer, 293-308.

YE N. (2008) Secure Computer and Network Systems. John Wiley & Sons,
Chichester.

