PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Maximum power point tracking controller for photovoltaic system based on chaos quantum particle swarm optimization – moth-flame optimization hybrid model

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To convert photovoltaic arrays to solar energy in a more efficient way, this paper has proposed a maximum power point tracking controller model based on the chaotic quantum particle swarm-mothballing hybrid algorithm. First, the optimization of the particle swarm algorithm is designed to solve defects, such as premature maturity by using the quantum and chaotic strategies. The mothballing algorithm is introduced to help the model find global optimization-seeking more quickly. After that, further optimization was made to operate the tracking model in both offline and real-time parameters. The conductivity increment method and the perturbation observation method were adopted to effectively track the model under different temperatures and light intensities. Finally, the simulation and analysis experiments were carried out on the Simulink platform. The study’s proposed maximum power point tracking controller achieved a steady-state accuracy η2 of 99.84%. In summary, the study has proposed a hybrid intelligent algorithm with extraction of internal parameters. The maximum power point tracker based on the proposed method is proved to be both effective and accurate.
Rocznik
Strony
663--680
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr., wz.
Twórcy
autor
  • College of Electromechanical Engineering, Anyang Vocational and Technical College, Anyang 455000, China
autor
  • College of Electromechanical Engineering, Anyang Vocational and Technical College, Anyang 455000, China
Bibliografia
  • [1] Herrando M., Elduque D., Javierre C., Fueyo N., Life Cycle Assessment of solar energy systems for the provision of heating, cooling and electricity in buildings: A comparative analysis, Energy Conversion and Management, vol. 257, no. 1, 115402 (2022), DOI: 10.1016/j.enconman.2022.115402.
  • [2] Raina G., Sinha S., Saini G., Sharma S., Malik P., Thakur N.S., Assessment of photovoltaic power generation using fin augmented passive cooling technique for different climates, Sustainable Energy Technologies and Assessments, vol. 52, no. 8, pp. 102095–102102 (2022), DOI: 10.1016/j.seta.2022.102095.
  • [3] Sun T., Shan M., Rong X., Yang X., Estimating the spatial distribution of solar photovoltaic power generation potential on different types of rural rooftops using a deep learning network applied to satellite images, Applied Energy, vol. 315, no. 3, pp. 119025–19035 (2022), DOI: 10.1016/j.apenergy.2022.119025.
  • [4] Asoh D.A., Noumsi B.D., Mbinkar E.N., Maximum power point tracking using the incremental conductance algorithm for PV systems operating in rapidly changing environmental conditions, Smart Grid and Renewable Energy, vol. 13, no. 5, pp. 89–108 (2022), DOI: 10.4236/sgre.2022.135006.
  • [5] Rerhrhaye F., Lahlouh I., Ennaciri Y., Benzazah C., Akkary A.E., Sefiani N., New solar MPPT control technique based on incremental conductance and multi-objective ant colony optimization, International Review of Automatic Control, vol. 15, no. 3, pp. 113–121 (2022), DOI: 10.15866/ireaco.v15i3.22076.
  • [6] Mishra J., Das S., Kumar D., Pattnaik M., A novel auto-tuned adaptive frequency and adaptive step-size incremental conductance MPPT algorithm for photovoltaic system, International Transactions on Electrical Energy Systems, vol. 31, no. 10, 12813 (2021), DOI: 10.1002/2050-7038.12813.
  • [7] Dehghani M., Taghipour M., Gharehpetian G.B., Abedi M., Optimized fuzzy controller for MPPT of grid-connected PV systems in rapidly changing atmospheric conditions, Journal of Modern Power Systems and Clean Energy, vol. 9, no. 2, pp. 376–383 (2021), DOI: 10.35833/MPCE.2019.000086.
  • [8] Lei X., Novel sub-area maximum power point tracking method based on improved variable-step-size perturbation and observation, Sensors and Materials: An International Journal on Sensor Technology, vol. 34, no. 4, pp. 1433–1444 (2022), DOI: 10.18494/SAM3655.
  • [9] Zhang L., Wang Z., Cao P., A maximum power point tracking algorithm of load current maximizationperturbation and observation method with variable step size, Symmetry, vol. 12, no. 2, pp. 244–254 (2020), DOI: 10.3390/sym12020244.
  • [10] Gharpure S., Ghodinde K.A., Deshpande A., Patil S.L., MPPT for thermoelectric generator using modified perturbation and observation method, International Conference on Advances in Electrical and Computer Technologies, vol. 711, no. 1, pp. 1293–1304 (2020), DOI: 10.1007/978-981-15-9019-1_105.
  • [11] Yan Y., Wang B., Wang C., Zhao D., Xiao C., Adaptive maximum power point tracking based on Kalman filter for hydrogen fuel cell in hybrid unmanned aerial vehicle applications, International Journal of Hydrogen Energy, vol. 48, no. 66, pp. 25939–25957 (2023), DOI: 10.1016/j.ijhydene.2023.03.288.
  • [12] Wang L., Wang H., Fu M., Liang J., Liu Y., A three-port energy router for grid-tied pv generation systems with optimized control methods, IEEE Transactions on Power Electronics, vol. 38, no. 1, pp. 1218–1231 (2023), DOI: 10.1109/TPEL.2022.3202873.
  • [13] Pendem S.R., Mikkili S., Assessment of cross-coupling effects in PV String-integrated-converters with P&O MPPT algorithm under various partial shading patterns, Journal of Electric Power and Energy Systems of the Chinese Society of Electrical Engineering, vol. 8, no. 4, pp. 63–70 (2022), DOI: 10.17775/CSEEJPES.2019.03330.
  • [14] Dian S., Zhong J., Guo B., Liu J., Guo R., A smooth path planning method for mobile robot using a BES-incorporated modified QPSO algorithm, Expert Systems with Application, vol. 208, no. 9, pp. 118256–118271 (2022), DOI: 10.1016/j.eswa.2022.118256.
  • [15] Wan L., Li H., Chen Y., Li C., Rolling bearing fault prediction method based on QPSO-BP neural network and dempster-shafer evidence theory, Energies, vol. 13, no. 5, pp. 1094–1117 (2020), DOI: 10.3390/en13051094.
  • [16] Usman A.M., Abdullah M.K., An assessment of building energy consumption characteristics using analytical energy and carbon footprint assessment model, Green and Low-Carbon Economy, vol. 1, no. 1, pp. 28–40 (2023), DOI: 10.47852/bonviewGLCE3202545.
  • [17] Kashyap A.K., Parhi D.R., Kumar P.B., Route outlining of humanoid robot on flat surface using MFO aided artificial potential field approach, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 236, no. 6, pp. 758–769 (2022), DOI: 10.1177/09544054211041.
  • [18] Fang Y., Luo B., Zhao T., Dong H., Jiang B., Liu Q., ST-SIGMA: Spatio-temporal semantics and interaction graph aggregation for multi-agent perception and trajectory forecasting, CAAI Transactions on Intelligence Technology, vol. 7, no. 4, pp. 744–757 (2022), DOI: 10.1049/cit2.12145.
  • [19] Pravalika J., Pakkiraiah B., Rekha M., Improved performance of an asynchronous motor drive with a new modified incremental conductance based MPPT Controller, 3rd International Conference on Design and Manufacturing Aspects for Sustainable Energy, Hyderabad, India, vol. 309, no. 01183 (2021), DOI: 10.1051/e3sconf/202130901183.
  • [20] Antony R.S., Giftson S.G., BOSS-D-RBFN: Boosted Salp Swarm optimization based Deep RBFN for MPPT under partial shading condition in photovoltaic systems, Optik, vol. 1, no. 259, pp. 168876–168896 (2022), DOI: 10.1016/j.ijleo.2022.168876.
  • [21] Rajesh K., Radial basis function neural network MPPT controller-based microgrid for hybrid standalone energy system used for irrigation, Circuit World, vol. 49, no. 2, pp. 251–266 (2023), DOI: 10.1108/CW-03-2022-0076.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b50f3001-653e-4a0e-8860-5de7d2dd86d4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.