Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The propagation of X-ray waves through an optical system consisting of many X-ray refractive lenses is considered. Two differential equations are contemplated for solving the problem for electromagnetic wave propagation: first – an equation for the electric field, second – an equation derived for a complex phase of an electric field. Both equations are solved by the use of a finite-difference method. The simulation error is estimated mathematically and investigated. The presented results for equations show that in order to establish a high accuracy computation a much smaller number of points is needed to solve the problem of X-ray waves propagation through a multi-lens system when the method for the second equation is used. The reason for such a result is that the electric field of a wave after passing through many lenses is a quickly oscillating function of coordinates, while the electric field phase is a quickly increasing, but not oscillating function. Therefore, a very detailed difference grid, which is necessary to approximate the considered electric field can be replaced by not such a detailed grid, when computations are made for the complex wave of the electric field. The simulation error of both suggested methods is estimated. It is shown that the derived equation for a phase function allows efficient simulation of propagation of X-rays for the multi-lens optical system.
Wydawca
Rocznik
Tom
Strony
171--186
Opis fizyczny
Bibliogr. 16 poz., rys., tab.
Twórcy
autor
- Baltic I. Kant Federal University Al. Nevsky 14, Kaliningrad, Russia
autor
- Gdansk University of Technology Narutowicza 11/12, 80-233 Gdansk, Poland
Bibliografia
- [1] Snigirev A, Kohn V, Snigireva I and Lengeler B 1996 Nature 384 49
- [2] Kohn V, Snigireva I, Snigirev A 2003 Optics Communications 216 247
- [3] Kohn V G 2002 Letters in JETPH 76 (10) 701
- [4] Artemev A N, Snigirev A A, Kohn V G, Snigireva I I, Artemev N A, Grigoriev M V, Glinkin H P, Levtonov M S, Kvardakov V V, Zabelin A V and Maevsky A G 2006 A. surface, X-ray, synchrotron and neutron researches 2 110
- [5] Artemiev A, Snigirev A V I, Artemiev N, Grigoriev M, Peredkov S, Glikin L, Levtonov M V, Zabelin A, and Maevskiy A 2006 Review of Scientific Instruments 77, 063113-1
- [6] Yunkin V, Grigoriev M, Kuznetsov S, Snigirev A and Snigireva I 2004 Procs of SPIE 5539 226
- [7] Snigirev A, Filseth B, Elleaume P, Klocke T, Kohn V, Lengeler B, Snigireva I, Souvorov A and Tummeler J 1997 Procs of SPIE Macrander A T and Khounsary A M Eds, SPIE, 3151 164
- [8] Lengeler B, Schroer C, Tummler J, Benner B, Richwin M, Snigirev A, Snigireva I and Drakopoulos M 1999 J. Synchrotron Rad 1153
- [9] Kohn V G 2012 J. Synchrotron Rad 19 84
- [10] Kohn V G 2011 J. Synhrotron Rad 19 84
- [11] Kohn V G 2009 A. surface, X-ray, synchrotron and neutron researches 5 32
- [12] Leontovich M A 1944 Izvestiya AN SSSR, Ser. Phys. 8 16
- [13] Babich V M and Buldyrev V S 1972 Asymptotic methods in problems of diffraction of short waves
- [14] Kshevetskii S P and Wojda P 2014, Proc. SPIE 9209, Advances in Computational Methods for X-Ray Optics III 92090Q
- [15] Berezin I S and Zydkov N P 1966 Computing Methods 3rd ed. 1; 1962 2nd ed. 2
- [16] Rytov S M, Kravtsov Yu A and Tatarskiy V I 1978 Introduction to Statistical Radiophysics. Part 2: Random field
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b50bd150-7096-4e43-9186-f337706e13b4