PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Zwykły DfAM już nie wystarcza, czyli co nowego słychać w designie

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
PL
Szybkie prototypowanie (ang. rapid prototyping) było pierwszym etapem zastosowań 3DP. Następnym etapem było szybkie oprzyrządowanie (ang. rapid tooling). Obecnie jesteśmy na etapie szybkiego wytwarzania (ang. rapid manufacturing), czyli wprowadzania 3DP do produkcji średnio- i wielkoseryjnej. Nie jest to prosty proces. W najszerszym sensie obejmuje całościowe ujęcie procesu wytwarzania addytywnego od pomysłu, poprzez design, produkcję oraz dystrybucję i opis zachowania wydrukowanych w 3D części w trakcie ich użytkowania wraz ze stworzeniem pakietów oprogramowania uwzględniających wszystkie te etapy. Jednym z nich jest design czyli projektowanie... [wstęp]
Rocznik
Strony
74--80
Opis fizyczny
Bibliogr. 84 poz.
Twórcy
  • Instytut Chemii Fizycznej PAN, Warszawa
Bibliografia
  • [1] Dodziuk H.: Druk 3D/AM. Zastosowania oraz skutki społeczne i gospodarcze. PWN, Warszawa 2019.
  • [2] ASTM E2987/E2987M, 2016, Standard Terminology for Additive Manufacturing Technologies.
  • [3] Mani M., Witherell P., Jee H.: Design rules for additive manufacturing: a categorization, 2017/8/6, International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, ASME.
  • [4] Grimm T., 16 III 2020, Manufacturing Blog: Should You Design for Additive Manufacturing?, https://www.asme.org/topics-resources/content/manufacturing-blog-should-you-design-for-additive-manufacturing, [dostęp 26 II 2022].
  • [5] Bernstein L., 11 paźdz. 2020, What is computer-aided design and why it’s important, https://www.procore. com/jobsite/what-is-computer-aided-design-cad-and-why-its-important/, [dostęp 26 II 2022].
  • [6] https://markforged.com/resources/ blog/design-for-additive-manufacturing-dfam [dostęp 26 II 2022].
  • [7] Erickson A., 26 Dec. 2018, 7 principles for design for additive manufacturing, https://www.cati.com/blog/2018/12/7-design-additive-manufacturing-dfam-principles/ [dostęp 5 II 2022]. [8] Design for additive manufacturing (DfAM) 3D printing strategies, https://markforged.com/resources/blog/design-for-additive-manufacturing-dfam [dostęp 26 II 2022].
  • [9] Gibson I., Goenka G., Narasimhan R., Bhat N., Design rules for additive manufacture, https://research.utwente. nl/en/publications/design-rules-for-additive-manufacture [dostęp 4 III 2022].
  • [10] Meisel N., Williams C. (October 12, 2015). An Investigation of Key Design for Additive Manufacturing Constraints in Multimaterial Three-Dimensional Printing. ASME. J. Mech. Des. November 2015; 137(11): 111406. https://doi. org/10.1115/1.4030991.
  • [11] Ko H., Moon S.K., Hwang J.: Design for additive manufacturing in customized products. Int. J. Precis. Eng. Manuf. 16, 2369-2375 (2015). https://doi. org/10.1007/s12541-015-0305-9.
  • [12] Mani M., Lane B., Donmez A., Feng S., Moylan S., and Fesperman R., 2015, Measurement Science Needs for Real-Time Control of Additive Manufacturing Powder Bed Fusion Processes, NIST IR 8036, National Institute of Standards and Technology.
  • [13] Grames E., 9 IX 2020, What is FDM 3D printing – simply explained, https://all3dp.com/2/fused-deposition-modeling-fdm-3d-printing-simply explained/ [dostęp 26 II 2022].
  • [14] Gregurić L., 29 VI 2019, PolyJet – 3D printing technologies simply explained, https://all3dp.com/2/polyjet-3d-printing-technologies-simply-explained/ [dostęp 26 II 2022].
  • [15] Czas dotyku, tj. czas, w którym pracuje się nad produktem, zwiększając jego wartość. Jest on na ogół dużo mniejszy niż całkowity czas produkcji, w który wliczony jest czas kolejkowania, przesuwania itp. http://www.sixsigmatra iningfree.com/touch-time.html [dostęp 27 lutego 2022].
  • [16] Alfaify A., Saleh M., Abdullah F.M., Al.-Ahmari A.M., Design for additive manufacturing: a systematic review, Sustainability 2020, 12, 7936 (22 strony); doi:10.3390/su12197936, https://www. mdpi.com/2071-1050/12/19/7936/htm, dostęp 5 marca 2022.
  • [17] Beaman J.J., Barlow J.W., Bourell D.L., Crawford R.H., Marcus H.L., McAlea K.P.: Solid freeform fabrica tion: A new direction in manufacturing. Kluwer Acad. Publ. Norwell Ma 1997, 2061, 25-49.
  • [18] Comb J., Priedeman W., Turley P.W.: FDM® Technology process improvements. In Proceedings of the 1994 International Solid Freeform Fabrication Symposium, UT Austin, TX, USA, 8–10 June 1994, pp. 42-49.
  • [19] Sachs E.M., Haggerty J.S., Cima M.J., Williams P.A.: Three-Dimensional Printing Techniques. Google Patents No. 5,204,055, 20 April 1993.
  • [20] Feygin M., Hsieh B.: Laminated object manufacturing (LOM): A simpler process. In Proceedings of the 1991 Inter national Solid Freeform Fabrication Symposium, UT Austin, TX, USA, 12–14 August 1991, pp. 123-130.
  • [21] Mazumder J., Schierer A., Choi J.: Direct materials deposition: Designed macro and microstructure. Mater. Res. Innov. 1999, 3, 118-131.
  • [22] Laverne F., Segonds F., Anwer N., Le Coq M.: DFAM in the design process: A proposal of classification to foster early design stages. In Proceedings of the Confere 2014 Croatie, Sibenik, Croatia, 3–4 April 2014.
  • [23] Edgar J., Tint S.: Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing. Johns. Matthey Technol. Rev. 2015, 59, 193-198.
  • [24] Ko H., Moon S.K., Hwang J.: Design for additive manufacturing in customized products. Int. J. Precis. Eng. Manuf. 2015, 16, 2369-2375.
  • [25] Zhang K., Cheng G.: Three-dimensional high resolution topology optimization considering additive manufacturing constraints. Addit. Manuf. 2020, 35, 101224.
  • [26] Ameen W., Al-Ahmari A., Abdul hameed O.: Design for metal additive manufacturing: An investigation of key design application on electron beam melting. Int. J. Mech. Aerosp. Ind. Mechatron. Manuf. Eng. 2019, 13, 264-269.
  • [27] Zhang W., Zhou L.: Topology optimization of self-supporting structures with polygon features for additive manufacturing. Comput. Methods Appl. Mech. Eng. 2018, 334, 56-78.
  • [28] Zhang K., Cheng G., Xu L.: Topology optimization considering overhang constraint in additive manufacturing. Comput. Struct. 2019, 212, 86-100.
  • [29] Xiong Y., Yao S., Zhao Z.-L., Xie Y.M.: A new approach to eliminating enclosed voids in topology optimization for additive manufacturing. Addit. Manuf. 2020, 32, 101006.
  • [30] Peng H., Ghasri-Khouzani M., Gong S., Attardo R., Ostiguy P., Rogge R.B., Gatrell B.A., Budzinski J., Tomonto C., Neidig J.: Fast prediction of thermal distortion in metal powder bed fusion additive manufacturing: Part 2, a quasi-static thermo-mechanical model. Addit. Manuf. 2018, 22, 869-882.
  • [31] Dapogny C., Estevez R., Faure A., Michailidis G.: Shape and topology optimization considering anisotropic features induced by additive manufacturing processes. Comput. Methods Appl. Mech. Eng. 2019, 344, 626-665.
  • [32] Sabiston G., Kim I.Y.: 3D topology optimization for cost and time minimization in additive manufacturing. Struct. Multidiscip. Optim. 2020, 61, 731-748.
  • [33] Thompson M.K., Moroni G., Vaneker T., Fadel G., Campbell R.I., Gibson I., Bernard A., Schulz J., Graf P., Ahuja B.: Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints. CIRP Ann. 2016, 65, 737-760.
  • [34] Gibson L.J., Ashby M.F.: Cellular Solids: Structure and Properties; Cam bridge University Press: Cambridge, UK, 1999.
  • [35] Fielding G.A., Bandyopadhyay A., Bose S.: Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds. Dent. Mater. 2012, 28, 113-122.
  • [36] Nazir A., Abate K.M., Kumar A., Jeng J.-Y.: A state-of-the-art review on types, design, optimization, and additive manufacturing of cellular structures. Int. J. Adv. Manuf. Technol. 2019, 104, 3489-3510.
  • [37] Chu C., Graf G., Rosen D.W.: Design for additive manufacturing of cellular structures. Comput. Aided Des. Appl. 2008, 5, 686-696.
  • [38] Vayre B., Vignat F., Villeneuve F.: Designing for additive manufacturing. Procedia CIRP 2012, 3, 632-637.
  • [39] Vayre B., Vignat F., Villeneuve F.: Metallic additive manufacturing: State-of-the-art review and prospects. Mech. Ind. 2012, 13, 89-96.
  • [40] Banhart J.: Progress in Materials Science. Manuf. Characterisation Appl. Cell. Met. Met. Foam. 2001, 46, 559-632.
  • [41] Boothroyd G.: Product design for manufacture and assembly. Comput. Aided Des. 1994, 26, 505-520.
  • [42] Dietrich D.M., Cudney E.: Impact of integrative design on additive manufacturing quality. Int. J. Rapid Manuf. 2011, 2, 121-131.
  • [43] Kumke M., Watschke H., Vietor T.: A new methodological framework for design for additive manufacturing. Virtual Phys. Prototyp. 2016, 11, 3-19.
  • [44] Yang S., Talekar T., Sulthan M.A., Zhao Y.F.: A generic sustainability assessment model towards consolidated parts fabricated by additive manufacturing process. Procedia Manuf. 2017, 10, 831-844.
  • [45] Zalewski, 5 marca 2015, https:// fortune.com/2015/03/05/ge-engine-3d-printing/ [dostęp 7 marca 2022].
  • [46] Kellner T.: An epiphany of disruption: GE additive chief explains how 3D printing will upend manufacturing. GE Rep. 2017, 13. Available online: https://www.ge.com/reports/epiphany-disruption-additive-chiefexplains-3d-printing-will-upend-manufacturing/ [dostęp 7 marca 2022].
  • [47] Oh Y., Behdad S., Zhou C.: Part Separation Methods for Assembly Based Design in Additive Manufacturing. In Proceedings of the ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Cleveland, OH, USA, 6–9 August 2017.
  • [48] Ponche R., Kerbrat O., Mognol P., Hascoet J.Y.: A novel methodology of design for Additive Manufacturing applied to Additive Laser Manufacturing process. Robot. Comput. Integr. Manuf. 2014, 30, 389-398.
  • [49] Rosen D.W.: Computer-aided design for additive manufacturing of cellular structures. Comput. Aided Des. Appl. 2007, 4, 585-594.
  • [50] Liu J.: Guidelines for AM part consolidation. Virtual Phys. Prototyp. 2016, 11, 133-141.
  • [51] Jin T.: Development of Concentric Semi-Automated Manipulator for Assembly Process. Ph.D. Thesis, Universiti Putra Malaysia, Seri Kembangan, Selangor, Malaysia, 2018.
  • [52] Choi J.W., Yamashita M., Sakaki bara J., Kaji Y., Oshika T., Wicker R.B.: Combined micro and macro additive manufacturing of a swirling flow coaxial phacoemulsifier sleeve with internal micro-vanes. Biomed. Microdevices 2010, 12, 875-886.
  • [53] Altaf K., Rani A.M.A., Raghavan V.R.: Prototype production and experimental analysis for circular and profiled conformal cooling channels in aluminium filled epoxy injection mould tools. Rapid Prototyp. J. 2013, 19, 220-229.
  • [54] Garcia M., Garcia-Pando C., Marto C.: Conformal cooling in moulds with special geometry. In Proceedings of the Innovative Developments in Virtual and Physical Prototyping, Leira, Portugal, 28 September–1 October 2011; pp. 409-412.
  • [55] Dapino M.J.: Smart structure integration through ultrasonic additive manufacturing. In Proceedings of the ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Newport, RI, USA, 8–10 September 2014.
  • [56] Khosravani M.R., Reinicke T.: 3D-printed sensors: Current progress and future challenges. Sens. Actuators A Phys. 2020, 305, 11191.
  • [57] https://www.basf.com/global/en/who-we-are/organization/group-companies/BASF_New-Business-GmbH/ our-solutions/3d-printing.html [dostęp 7 marca 2022].
  • [58] Vanaei S., Parisi M.S., Vanaei S., Salemizadehparisi F., Vanaei H.R.: An Overview on Materials and Techniques in 3D Bioprinting Toward Biomedical Application, Engineered Regeneration, 2, 2021, 1-18, https:// doi.org/10.1016/j.engreg.2020.12.001, https://www.sciencedirect.com/science/article/pii/S266613812030013X [dostęp 7 marca 2022 ].
  • [59] https://formlabs.com/eu/blog/3d-printing-materials/ [dostęp 7 marca 2022].
  • [60] Ngo T.D., Kashani A., Imbalzano G., Nguyen K.T., Hui D.: Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. Part B Eng. 2018, 143, 172-196.
  • [61] Taddese G., Durieux S., Duc E.: Sustainability performance indicators for additive manufacturing: A literature review based on product life cycle studies. Int. J. Adv. Manuf. Technol. 2020, 107, 1-26.
  • [62] Medellin-Castillo H.I., Zaragoza-Siqueiros J.: Design and Manufacturing Strategies for Fused Deposition Modelling in Additive Manufacturing: A Review. Chin. J. Mech. Eng. 2019, 32, 53.
  • [63] Manufacturing, S.D. Design for Additive Manufacturability: FDM Basics; Stratasys Direct Inc.: Valencia, CA, USA, 2016.
  • [64] Gibson I., Rosen D.W., Stucker B.: Design for additive manufacturing. In Additive Manufacturing Technologies; Springer: Berlin/Heidelberg, Germany, 2010; pp. 299-332.
  • [65] Yang S., Zhao Y.F.: Additive manufacturing-enabled design theory and methodology: A critical review. Int. J. Adv. Manuf. Technol. 2015, 80, 327-342.
  • [66] Phatak A., Pande S.: Optimum strategies for hollowing and part orientation in additive manufacturing. Int. J. Precis. Technol. 2016, 6, 61-77.
  • [67] Jiang J., Xu X., Stringer J.: Optimization of process planning for reducing material waste in extrusion based additive manufacturing. Robot. Comput. Integr. Manuf. 2019, 59, 317-325.
  • [68] Baptista R., Pragana J., Bragança I., Silva C., Alves L., Martins P.: Joining aluminium profiles to composite sheets by additive manufacturing and forming. J. Mater. Process. Technol. 2020, 279, 116587.
  • [69] Ameta G., Lipman R., Moylan S., Witherell P.: Investigating the role of geometric dimensioning and tolerancing in additive manufacturing. J. Mech. Des. 2015, 137.
  • [70] Abramovici M., Göbel J.C., Savarino P., Gebus P.: Towards smart product lifecycle management with an integrated reconfiguration management. In Proceedings of the IFIP International Conference on Product Lifecycle Management, Seville, Spain, 10–12 July 2017; pp. 489-498.
  • [71] Podshivalov L., Gomes C.M., Zocca A., Guenster J., Bar-Yoseph P., Fischer A.: Design, analysis and additive manufacturing of porous structures for biocompatible micro-scale scaffolds. Procedia CIRP 2013, 5, 247-252.
  • [72] Tedia S., Williams C.B.: Manufacturability analysis tool for additive manufacturing using voxel-based geometric modeling. In Proceedings of the 27th Annual International Solid Freeform Fabrication (SFF) Symposium, Austin, TX, USA, 8–10 August 2016; pp. 3-22.
  • [73] Huang J., Chen Q., Jiang H., Zou B., Li L., Liu J., Yu H.: A survey of design methods for material extrusion polymer 3D printing. Virtual Phys. Prototyp. 2020, 15, 148-162.
  • [74] Gu G.X., Wettermark S., Buehler M.J.: Algorithm-driven design of fracture resistant composite materials realized through additive manufacturing. Addit. Manuf. 2017, 17, 47-54.
  • [75] Madelein P., 23 września 2021, https:// www.3dnatives.com/en/topological-optimization-software-for-3d-printing-230920214/, dostęp 10 marca 2022.
  • [76] https://www.3ds.com/products-services/solidworks/ [dostęp 10 marca 2022].
  • [77] https://www.autodesk.com/autodesk-university/class/Modeling-3D-Printing-Autodesk-Design-Suites-2013 [dostęp 10 marca 2022].
  • [78] https://en.wikipedia.org/wiki/Rhinoceros_3D, dostęp 10 marca 2022.
  • [79] Di Angelo L., Di Stefano P., Dolatnezhadsomarin A., Guardiani E., Khorram E.: A reliable build orientation optimization method in additive manufacturing: The application to FDM technology. Int. J. Adv. Manuf. Technol. 2020, 108, 263-276.
  • [80] Shen H., Ye X., Xu G., Zhang L., Qian J., Fu J.: 3D printing build orientation optimization for flexible support plat form. Rapid Prototyp. J. 2020, 26, 59-72.
  • [81] Cheng L., Liang X., Bai J., Chen Q., Lemon J., To A.: On utilizing topology optimization to design support structure to prevent residual stress induced build failure in laser powder bed metal additive manufacturing. Addit. Manuf. 2019, 27, 290-304.
  • [82] Sharma G., Gurumoorthy B.: Modelling multiply connected heterogeneous objects using mixed-dimensional material reference features. J. Comput. Des. Eng. 2019, 6, 337-347.
  • [83] Mohit A., 19 sierpnia 2021, https://layers.app/blog/best-3d-printing-management-software-solutions/ [dostęp 12 marca 2022].
  • [84] Lavi G., 14 Stycznia 2022, https://all3dp.com/1/3d-printing-workflowmes-software-buyers-guide/ [dostęp 12 marca 2022].
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b50a802e-97bb-4201-8396-be700ae0c75f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.