PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The impact of variable fluid properties on natural convection flow past a vertical cone

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A free convective flow of an incompressible viscous fluid past an isothermal vertical cone is investigated with variable viscosity and variable thermal conductivity. The constant wall temperature (CWT) and constant wall heat flux (CHF) conditions are used as temperature boundary conditions at the surface of the cone. The successive linearization method is applied to linearize the governing nonlinear differential equations of the flow. The numerical solution for the resulting linear equations is attained through the Chebyshev spectral collocation method. The impact of significant parameters on the velocity and temperature, in addition to heat and mass transfer rates, is evaluated and represented graphically for the CWT and CHF situations. The local heat transfer rate decreases, and the coefficient of the skin friction increases with an increase in the viscosity and thermal conductivity parameters for CWT conditions, but the reverse trend is noticed for CHF conditions.
Rocznik
Strony
73--85
Opis fizyczny
Bibliogr. 26 poz., rys.
Twórcy
  • Department of Mathematics, National Institute of Technology Warangal, TS, India
  • Department of Mathematics, National Institute of Technology Warangal, TS, India
Bibliografia
  • [1] Merk, H.J., & Prins, J.A. (1954). Thermal convection in laminar boundary layers II. Applied Scientific Research, 4(3), 195-206.
  • [2] Hering, R., & Grosh, R. (1962). Laminar free convection from a non-isothermal cone. International Journal of Heat and Mass Transfer, 5(11), 1059-1068.
  • [3] Kafoussias, N. (1992). Effects of mass transfer on free convective flow past a vertical isothermal cone surface. International Journal of Engineering Science, 30(3), 273-281.
  • [4] Ece, M.C. (2005). Free convection flow about a cone under mixed thermal boundary conditions and a magnetic field. Applied Mathematical Modelling, 29(11), 1121-1134.
  • [5] Palani, G., & Ragavan, A.R. (2015). Free convection flow past a vertical cone with a chemical reaction in the presence of transverse magnetic field. Journal of Engineering Physics and Thermophysics, 88(5), 1256-1263.
  • [6] Vanita, & Kumar, A. (2016). Numerical study of effect of induced magnetic field on transient natural convection over a vertical cone. Alexandria Engineering Journal, 55(2), 1211-1223.
  • [7] Ajay, C.K., & Srinivasa, A.H. (2020). Unsteady MHD natural convective boundary layer flow and heat transfer over a truncated cone in the presence of pressure work. Journal of Applied Mathematics and Computational Mechanics, 19(1), 5-16.
  • [8] Kannan, R.M., Pullepu, B., & Sajid, M. (2022). Free convective flow past a vertical cone with magnetohydrodynamics / heat generation / absorption with Variable heat flux. Mathematical Modelling of Engineering Problems, 9(1), 11-18.
  • [9] Kays, W.M., & Crawford, M.E. (1980). Convective Heat and Mass Transfer. McGraw-Hill Companies.
  • [10] Herwig, H., & Wickern, G. (1986). The effect of variable properties on laminar boundary layer flow. Wärme- und Stoffübertragung, 20(1), 47-57.
  • [11] Chand, R., Rana, G.C., & Kumar, S.. (2013). Variable gravity effects on thermal instability of nanofluid in anisotropic porous medium. International Journal of Applied Mechanics and Engineering, 18(3), 631-642.
  • [12] Choudhury, M., & Hazarika, G. (2013). The effects of variable viscosity and thermal conductivity on MHD oscillatory free convective flow past a vertical plate in slip flow regime with variable suction and periodic plate temperature. Journal of Applied Fluid Mechanics, 6(2), 277-283.
  • [13] Mekheimer, K.S., & Abd Elmaboud, Y. (2014). Simultaneous effects of variable viscosity and thermal conductivity on peristaltic flow in a vertical asymmetric channel. Canadian Journal of Physics, 92(12), 1541-1555.
  • [14] Anjali Devi, S.P., & Prakash, M. (2015). Temperature dependent viscosity and thermal conductivity effects on hydromagnetic flow over a slendering stretching sheet. Journal of the Nigerian Mathematical Society, 34(3), 318-330.
  • [15] Umavathi, J.C., Chamkha, A.J., & Mohiuddin, S. (2016). Combined effect of variable viscosity and thermal conductivity on free convection flow of a viscous fluid in a vertical channel. International Journal of Numerical Methods for Heat & Fluid Flow, 26(1), 18-39.
  • [16] Srinivasacharya, D, & Jagadeeshwar, P. (2018). Effect of variable properties on the flow over an exponentially stretching sheet with convective thermal conditions. Modelling, Measurement and Control B, 87(1), 7-14.
  • [17] Mushtaq, A., Farooq, M.A., Sharif, R., & Razzaq, M. (2019). The impact of variable fluid properties on hydromagnetic boundary layer and heat transfer flows over an exponentially stretching sheet. Journal of Physics Communications, 3(9), 095005.
  • [18] Ahmed, S., Hazarika, G.C., & Gogoi, G. (2020). Investigation of variable viscosity and thermal conductivity on MHD mass transfer flow problem over a moving non-isothermal vertical plate. Journal of Naval Architecture and Marine Engineering, 17(2), 183-197.
  • [19] Ahmad, U., Ashraf, M., Al-Zubaidi, A., Ali, A., & Saleem, S. (2021). Effects of temperaturę dependent viscosity and thermal conductivity on natural convection flow along a curved surface in the presence of exothermic catalytic chemical reaction. PLOS ONE, 16(7), e0252485.
  • [20] Chu, Y.M., Shah, F., Khan, M. I., Kadry, S., Abdelmalek, Z., & Khan, W.A. (2020). Cattaneo-Christov double diffusions (CCDD) in entropy optimized magnetized second grade nanofluid with variable thermal conductivity and mass diffusivity. Journal of Materials Research and Technology, 9(6), 13977-13987.
  • [21] Khan, M.I., Khan, S.U., Jameel, M., Chu, Y.M., Tlili, I., & Kadry S. (2021). Significance of temperature-dependent viscosity and thermal conductivity of Walter’s B nanoliquid when sinusoidal wall and motile microorganisms’ density are significant. Surfaces and Interfaces, 22, 100849.
  • [22] Song, Y.Q., Waqas, H., Al-Khaled, K., Farooq, U., Khan, S.U., Khan, M.I., Chu, Y.M., & Qayyum, S. (2021). Bioconvection analysis for Sutterby nanofluid over an axially stretched cylinder with melting heat transfer and variable thermal features: A Marangoni and solutal model. Alexandria Engineering Journal, 60(5), 4663-4675.
  • [23] Salahuddin, T., Khan, M., Saeed, T., Ibrahim, M., & Chu, Y.M. (2021). Induced MHD impact on exponentially varying viscosity of Williamson fluid flow with variable conductivity and diffusivity. Case Studies in Thermal Engineering, 25, 100895.
  • [24] Islam, T., Alam, M.N., Asjad, M.I., Praveen, N., & Chu, Y.M. (2021). Heatline visualization of MHD natural convection heat transfer of nanofluid in a prismatic enclosure. Scientific Reports, 11, 10972.
  • [25] Sarker, S.P.K., & Alam, M.M. (2021). Effect of variable viscosity and thermal conductivity on MHD natural convection flow along a vertical flat plate. Journal of Advances in Mathematics and Computer Science, 36(3), 58-71.
  • [26] Hasan, M.F., Molla, M.M., Kamrujjaman, M., & Siddiqa, S. (2022). Natural convection flow over a vertical permeable circular cone with uniform surface heat flux in temperature-dependent viscosity with three-fold solutions within the boundary layer. Computation, 10(4), 60.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b5098bfd-308f-416b-b21f-62562003ae85
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.