PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Evaluation of infiltration models for mineral soils with different land uses in the tropics

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ocena modeli infiltracji opracowanych dla gleb mineralnych o różnym typie użytkowania w tropikach
Języki publikacji
EN
Abstrakty
EN
The aims of this study were to evaluate five infiltration models for mineral soils in the tropics with different land use types, such as settlements, plantations, rice fields, and forests. The infiltration models evaluated were Green–Ampt, Kostiakov, Kostiakov–Lewis, Philip, and Horton. The research was conducted at the Amprong watershed, Malang, Indonesia. The infiltration rate of the thirteen soil samples was analysed. The infiltration was tested using Turf-Tech infiltrometer. Moreover, each soil sample was tested in terms of the bulk density, specific gravity, porosity, soil moisture, and soil texture. The results of the study indicate that there is no significant difference (α = 5%) in the infiltration rate among the five models of infiltration. The infiltration rate in the study site was considered fast. Three models exhibiting the best performance are Kostiakov, Kostiakov–Lewis, and Horton model, respectively. The highest infiltration rate occurred in the forest land use while the lowest occurred in the rice field land use. The results of this study suggest that the infiltration model parameters correlate closely with the initial infiltration rate (fo) and the final infiltration rate (fc). In other words there is a correlation between the soil's ability to absorb water (representing the capillary force or horizontal flow) at the beginning of the infiltration (fo) and the gravity or the vertical flow upon reaching the final infiltration rate (fc).
PL
Celem badań prezentowanych w niniejszej pracy była ocena pięciu modeli infiltracji opracowanych dla gleb mineralnych o różnym typie użytkowania w tropikach, takich jak: obszary zabudowane, plantacje, pola ryżowe i lasy. Oceniano modele Greena–Ampta, Kostiakova, Kostiakova–Lewisa, Philipa i Hortona. Badania prowadzono w zlewni Amprong, Malang w Indonezji. Analizowano tempo infiltracji w trzynastu próbkach glebowych z użyciem infiltrometru Turf-Tech. Ponadto w każdej próbce gleby analizowano gęstość objętościową, ciężar właściwy, porowatość, wilgotność gleby i skład granulometryczny. Wyniki badań dowiodły, że nie ma istotnej różnicy w tempie infiltracji (α = 5%) obliczonej za pomocą wymienionych pięciu modeli. Uznano, że tempo infiltracji było duże. Trzy modele, kolejno: Kostiakova, Kostiakova–Lewisa i Hortona okazały się najbardziej odpowiednie. Największe tempo infiltracji stwierdzono w glebach leśnych, a najmniejsze w glebach pod polami ryżowymi. Wyniki badań sugerują, że parametry modelu infiltracji są ściśle skorelowane z początkowym (fo) i końcowym (fc) tempem infiltracji. Innymi słowy, istnieje korelacja między zdolnością gleby do absorbowania wody (reprezentowana przez siły kapilarne i przepływ poziomy) na początku infiltracji (fo) oraz siłą ciążenia i przepływem pionowym po osiągnięciu końcowego tempa infiltracji (fc).
Wydawca
Rocznik
Tom
Strony
153--160
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
  • State University of Malang, Faculty of Engineering, Department of Civil Engineering, Malang, East Java Province, Indonesia
autor
  • University of Brawijaya, Faculty of Engineering, Department of Water Resources, Jl. Mt Haryono No 167, 65141 Malang, East Java Province, Indonesia
autor
  • University of Brawijaya, Faculty of Engineering, Department of Water Resources, Jl. Mt Haryono No 167, 65141 Malang, East Java Province, Indonesia
  • University of Brawijaya, Faculty of Engineering, Department of Water Resources, Jl. Mt Haryono No 167, 65141 Malang, East Java Province, Indonesia
  • University of Brawijaya, Faculty of Engineering, Department of Water Resources, Jl. Mt Haryono No 167, 65141 Malang, East Java Province, Indonesia
Bibliografia
  • ABDULKADIR A., WUDDIVIRA M.N., ABDU N., MUDIARE O.J. 2011. Use of Horton infiltration model in estimating infiltration characteristics of an alfisol in the Northern Guinea Savanna of Nigeria. Journal of Agricultural Science and Technology. A 1 p. 925–931.
  • AGHASI B., JALALIAN A., HONARJOo N. 2010. The comparison of some soil quality indexes in different land use of Ghareh Aghaj watershed of Semirom. Isfahan. Iran. International Journal of Environmental and Earth Science. Vol. 1. No. 2. p. 76–80.
  • ASDAK C. 2002. Hidrologi dan pengelolaan daerah aliran sungai [Hydrology and watershed management]. Yogyakarta. Gadjah Mada University. ISBN 979-420-737-3 pp. 618.
  • ASKARI M., TANAKA T., SETIAWAN B.I., SAPTOMO S.K. 2008. Infiltration characteristics of tropical soil based on water retention data. Journal of Japan Society of Hydrology and Water Resources. Vol. 21. No. 3 p. 215–227.
  • BMKG 2016. Peta klasifikasi tipe iklim Schmidt Ferguson dan Oldeman (data tahun 1981–2010) di Propinsi Jawa Timur [Climate map of Schmidt Ferguson and Oldeman (data from 1981–2010) in East Java Province] (Map). Malang. Badan Meteorologi, Klimatologi dan Geofisika.
  • BRAKENSIEK D., ONSTAD C. 2000. Parameter estimation of the Green Ampt infiltration equation. Water Resources. Vol. 13. No. 6 p. 1009–1012.
  • BRESLER E., DAGAN G., WAGENET R., LAUFER A. 1984. Statistical analysis of salinity and texture effects on spatial variability of soil hydraulic conductivity. Soil Science Society of America Journal. Vol. 48(1) p. 16–25.
  • CZYŻYK F., ŚWIERKOT Z. 2017. Recharging infiltration of precipitation water through the light soil, in the absence of surface runoff. Journal of Water and Land Development. No. 32 p. 25–30. DOI 10.1515/jwld-2017-0003.
  • DEC D., JOSÉ D., FAZEKAS O., HORN R. 2008. Effect of bulk density on hydraulic properties. Journal of Soil Science and Plant Nutrition. Vol. 8(1) p. 1–13.
  • FULAZZAKY M., YUSOP Z., IBRAHIM I., KASSIM A. 2014. A new technique using the aero-infiltrometer to characterise the natural soils based on the measurements of infiltration rate and soil moisture content. Hydrology and Earth System Sciences. Vol. 11 p. 2515–2553.
  • GREEN W., AMPT H. 1911. The flow of air and water through soils. Agricultural Sciences.Vol. 4 p. 1–24.
  • HADISUSANTO N. 2011. Aplikasi hidrologi [Applied hydrology]. Malang. Jogja Mediautama. ISBN 978-602-9136-03-6 pp. 294.
  • HAGHNAZARI F., SHAHGHOLI H., FEIZI M. 2015. Factors affecting the infiltration of agricultural soils. International Journal of Agronomy and Agricultural Research. Vol. 6. No. 5 p. 21–35.
  • HARDJOWIGENO S. 2002. Ilmu tanah [Soil science]. Jakarta. Akademika Presindo. ISBN 978-602-8402-30-9.
  • HORTON R. 1940. An approach toward a physical interpretation of infiltration capacity. Soil Science Society of America Journal. Vol. 5 p. 339–417.
  • KOSTIAKOV A. 1932. O dinamike koefficienta prosachivania vody v pochvogrunty i neobkhodimosti dinamicheskogo podkhoda k ego izucheniu v meliorativnykh celyakh [On the dynamics of the coefficient of water-percolation in soils and on the necessity of studying it from a dynamic point of view for purposes of amelioration]. Pochvovedenie. No 3 p. 293–298.
  • KRAUSE P., BOYLE D., BASE F. 2005. Comparison of different efficiency criteria for hydrological model. Advances in Geosciences. Vol. 5 p. 89–97.
  • LEMESHOW S., HOSMER Jr D.W., KLAR J., LWAMGA S.K. 1990. Adequacy of sample size in health studies. Chichester. John Wiley & Sons. ISBN 0-471-92517-9 pp. 239.
  • LI Z., LIU W.Z., ZHANG X.C., ZHENG F.L. 2009. Impacts of land use change and climate variability on hydrology in an agricultural catchment on the loess plateau of China. Journal of Hydrology. Vol. 377 p. 25–42.
  • MBAGWU J. 1993. Testing the goodness of fit of selected infiltration. Trieste. International Centre for Theoretical Physics pp. 17.
  • NASH J.E., SUTCLIFFE J.V. 1970. River flow forecasting through conceptual models. Part I. A discussion of principles. Journal of Hydrology. Vol. 10. p. 282–290.
  • OLORUNFEMI I., FASINMIRIN J. 2011. Hydraulic conductivity and infiltration of soils of tropical rain forest climate of Nigeria. Abeokuta. Federal University of Agriculture p. 397–413.
  • ORUK E. 2011. Infiltration rate assessment of coastal plain (ultisol) soils for sustainable crop production in the frontiers of Calabar – Nigeria. Journal of Sustainable Development. Vol. 4 p. 222–229.
  • PEEL M., FINLAYSON B., MCMAHON T. 2007. Updated world map of Köppen-Geiger climate classification. Hydrology and Earth System Sciences. Iss. 11 p. 1633–1644.
  • PHILIP J. 1957. The theory of infiltration: 1. The infiltration. Soil Sciences. Vol. 83 p. 345–357.
  • PRIJONO S., MIDIYANINGRUM R., NAFRIESA S. 2015. Infiltration and evaporation rate in different landuse in the Bango Watershed. Malang District. Indonesia. International Journal of Agriculture and Research. Vol. 3. Iss. 4 p. 1061–1067.
  • RAWLS W.J., BRAKENSIEK D., MILLER N. 1983. Green-Ampt infiltration parameters from soils data. Journal of the Hydraulic Division – American Society of Civil Engineers. Vol. 109(1) p. 62–70.
  • RICHARDS L.A. 1931. Capillary conduction of liquids through porous materials. Physics. No. 1 p. 318–333.
  • ROSCOE J.T. 1975. Fundamental research statistics for the behavioural sciences. 2nd ed. New York. Holt Rinehart & Winston pp. 483.
  • SCHIPPER L., SPARLING G. 2000. Performance of soil condition indicators across taxonomic groups and land uses. Soil Science Society of America Journal. Vol. 64 p. 300–311.
  • SILVA M., NETTO A., NEVES R., VASCO A., ALMEIDA C., FACCIOLI G. 2015. Sensitivity analysis and calibration of hydrological modeling of the watershed Northeast Brazil. Journal of Environmental Protection. Iss. 6 p. 837–850.
  • SUBARDJA D., RITUNG S., ANDA M., SUKARMAN S., SUBANDIONO R.E. 2014. Petunjuk teknis klasifikasi tanah nasional [Technical guidelines of land classification in Indonesia]. Bogor. Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian. Badan Penelitian dan Pengembangan Pertanian. ISBN 978-602-8977-85-2 pp. 45.
  • SUBRAMANYA K. 2013. Engineering hydrology. New Delhi. Mc Graw Hill Education. ISBN 1259029972 pp. 534.
  • THORNLEYA J., CANNELL M. 2010. Managing forest for wood yield and carbon storage: A theoretical study. Tree Physiology. Vol. 20 p. 477–484.
  • USDA, NRCS 2010. Keys to soil taxonomy. 11th ed. Washington. United States Department of Agriculture & Natural Resources Conservation Service pp. 338.
  • VAGHEFI M., RAHIDEH H. 2011. Description of the G-A infiltration model using Chu and Chow viewpoints. Journal of Applied Sciences and Environmental Management. Vol. 15. No. 1 p. 31–36.
  • WALKER W., SKOGERBOE G. 1987. Surface irrigation: theory and practice. Englewood Cliffs. Prentice-Hall. ISBN 0138779295 pp. 386.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b5093e0d-5351-4b8e-9c56-73a7f8b15a09
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.