PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Pressure regulation on a single finger of tri-finger pneumatic grasper robot using finite time and convergence prescribed performance control

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Regulacja ciśnienia na pojedynczym palcu trójpalcowego pneumatycznego robota chwytającego z wykorzystaniem skończonego czasu i zalecanej konwergencji kontroli wydajności
Języki publikacji
EN
Abstrakty
EN
This study presents a method for improving the precision of pneumatic pressure regulation and control in a finger of a tri-finger pneumatic grasper (TPG) robot. The method employs finite time and convergence prescribed performance control (FTC-PPC) in conjunction with proportional, integral, and derivative (PID) control as a strategy to overcome the nonlinearity and uncertainties of pressure regulation of the pneumatic system in the TPG. Besides finite-time tuning, the proposed PPC formulation also introduced convergence rate and domain. To test the method, several experiments were conducted using a 5/3-way pneumatic proportional valve (PPV) configuration with pressure transducers for feedback responses. Two different pressure input patterns, a step, and periodic in-put patterns were used in the experiments. The results show that the proposed controller outperformed the PID as well as the finite-time PPC with PID from the previous works in regulating the pressure for a finger of the TPG by average. 10% in terms of minimizing overshoot, suppressing oscillations, and providing a fast response.
PL
W pracy przedstawiono metodę poprawy precyzji pneumatycznej regulacji i sterowania ciśnieniem w palcu trójpalcowego robota chwytaka pneumatycznego (TPG). Metoda wykorzystuje sterowanie wydajnością w określonym czasie i konwergencji (FTC-PPC) w połączeniu ze sterowaniem proporcjonalnym, całkującym i różniczkującym (PID) jako strategią przezwyciężenia nieliniowości i niepewności regulacji ciśnienia w układzie pneumatycznym w TPG. Oprócz dostrajania w skończonym czasie, proponowane sformułowanie PPC wprowadziło również szybkość i dziedzinę konwergencji. Aby przetestować tę metodę, przeprowadzono kilka eksperymentów przy użyciu konfiguracji pneumatycznego zaworu proporcjonalnego (PPV) 5/3 z przetwornikami ciśnienia do odpowiedzi sprzężenia zwrotnego. W eksperymentach wykorzystano dwa różne wzorce wejściowe ciśnienia, krok i okresowe wzorce wejściowe. Wyniki pokazują, że proponowany regulator przewyższał PID, a także skończony czas PPC z PID z poprzednich prac w regulacji ciśnienia na palec TPG średnio.
Rocznik
Strony
98--103
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
  • Universiti Malaysia Pahang, 26600, Pekan, Pahang, Malaysia
  • Universiti Malaysia Pahang, 26600, Pekan, Pahang, Malaysia
  • Universiti Malaysia Pahang, 26600, Pekan, Pahang, Malaysia
Bibliografia
  • [1] M. L. Dezaki, S. Hatami, A. Zolfagharian, and M. Bodaghi, "A pneumatic conveyor robot for color detection and sorting," Cognitive Robotics, vol. 2, pp. 60-72, 2022/01/01/ 2022, doi: https://doi.org/10.1016/j.cogr.2022.03.001.
  • [2] J. Dong, J. Shi, C. Liu, and T. Yu, "Research of Pneumatic Polishing Force Control System Based on High Speed On/off with PWM Controlling," Robotics and Computer-Integrated Manufacturing, vol. 70, p. 102133, 2021/08/01/ 2021, doi: https://doi.org/10.1016/j.rcim.2021.102133.
  • [3] H. Chang, C.-w. Lan, C. H. Chen, T.-T. Tsung, and J.-B. Guo, "Measurement of frictional force characteristics of pneumatic cylinders under dry and lubricated conditions," Przegląd Elektrotechniczny, 2012.
  • [4] R. Gkliva and M. Kruusmaa, "Soft Fluidic Actuator for Locomotion in Multi-Phase Environments," IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 10462-10469, 2022, doi: 10.1109/LRA.2022.3192204.
  • [5] L. Costi, J. Hughes, J. Biggins, and F. Iida, "Bioinspired Soft Bendable Peristaltic Pump Exploiting Ballooning for High Volume Throughput," IEEE Transactions on Medical Robotics and Bionics, vol. 4, no. 3, pp. 570-577, 2022, doi: 10.1109/TMRB.2022.3192763.
  • [6] L. P. Johnsen and H. Tsukagoshi, "Deformation-Driven Closed-Chain Soft Mobile Robot Aimed for Rolling and Climbing Locomotion," IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 10264-10271, 2022, doi: 10.1109/LRA.2022.3191798.
  • [7] M. I. P. Azahar, A. Irawan, and R. M. Taufika, "Fuzzy Self Adaptive PID for Pneumatic Piston Rod Motion Control," in ICSGRC 2019 - 2019 IEEE 10th Control and System Graduate Research Colloquium, Proceeding, 2019, pp. 82-87, doi: 10.1109/ICSGRC.2019.8837064.
  • [8] A. N. Frederik Stefanski, Bartosz Minorowicz, "Pneumatic single flapper nozzle valve driven by piezoelectric tube," Przegląd Elektrotechniczny, vol. 2015, no. 1, pp. 13-19, 2015.
  • [9] K. K. Jarosław Domin, "Hybrid pneumatic-electromagnetic launcher - general concept, mathematical model and results of simulation," Przeglad Elektrotechniczny, vol. 12, pp. 21-25, 2013.
  • [10] L. Gao, C. Wu, D. Zhang, X. Fu, and B. Li, "Research on a high-accuracy and high-pressure pneumatic servo valve with aerostatic bearing for precision control systems," Precision Engineering, vol. 60, pp. 355-367, 2019/11/01/ 2019, doi: https://doi.org/10.1016/j.precisioneng.2019.09.005.
  • [11] O. A. Gaheen, E. Benini, M. A. Khalifa, and M. A. Aziz, "Pneumatic cylinder speed and force control using controlled pulsating flow," Engineering Science and Technology, an International Journal, p. 101213, 2022/07/25/ 2022, doi: https://doi.org/10.1016/j.jestch.2022.101213.
  • [12] H. Das, D. Pool, and E. J. v. Kampen, "Incremental Nonlinear Dynamic Inversion Control of Long-Stroke Pneumatic Actuators," in 2021 European Control Conference (ECC), 29 June-2 July 2021 2021, pp. 978-983, doi: 10.23919/ECC54610.2021.9654927.
  • [13] Z. Liu, X. Yin, K. Peng, X. Wang, and Q. Chen, "Soft pneumatic actuators adapted in multiple environments: A novel fuzzy cascade strategy for the dynamics control with hysteresis compensation," Mechatronics, vol. 84, p. 102797, 2022/06/01/ 2022, doi: https://doi.org/10.1016/j.mechatronics.2022.102797.
  • [14] S. Dan, H. Cheng, Y. Zhang, and H. Liu, "A Fuzzy Indrect Adaptive Robust Control for Upper Extremity Exoskeleton Driven by Pneumatic Artificial Muscle," in 2022 IEEE International Conference on Mechatronics and Automation (ICMA), 7-10 Aug. 2022 2022, pp. 839-846, doi: 10.1109/ICMA54519.2022.9856383.
  • [15] C. Park et al., "Simultaneous Positive and Negative Pressure Control Using Disturbance Observer Compensating Coupled Disturbance Dynamics," IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 5763-5770, 2022, doi: 10.1109/LRA.2022.3160599.
  • [16] A. Tepljakov, B. B. Alagoz, C. Yeroglu, E. Gonzalez, S. H. HosseinNia, and E. Petlenkov, "FOPID Controllers and Their Industrial Applications: A Survey of Recent Results11This study is based upon works from COST Action CA15225, a network supported by COST (European Cooperation in Science and Technology)," IFAC-PapersOnLine, vol. 51, no. 4, pp. 25-30, 2018/01/01/ 2018, doi: https://doi.org/10.1016/j.ifacol.2018.06.014.
  • [17] M. Muftah and A. Faudzi, "Fractional-Order PIλDμ Controller for Position Control of Intelligent Pneumatic Actuator (IPA) System," 2021, pp. 242-250.
  • [18] M. I. P. Azahar, A. Irawan, and R. M. T. Raja Ismail, "Adjustable Convergence Rate Prescribed Performance with Fractional-Order PID Controller for Servo Pneumatic Actuated Robot Positioning," Cognitive Robotics, Article vol. 3, pp. 93- 106, 2023, doi: 10.1016/j.cogr.2023.04.004.
  • [19] M. I. P. Azahar, A. Irawan, and M. S. Ramli, "Transient Control Improvement on Pneumatic Servoing in Robot System using Fractional-Order PID with Finite-time Prescribed Performance Control," in 2022 IEEE 12th Symposium on Computer Applications & Industrial Electronics (ISCAIE), 21-22 May 2022 2022, pp. 206-210, doi: 10.1109/ISCAIE54458.2022.9794510.
  • [20] M. I. P. Azahar and A. Irawan, "Enhancing Precision on Pneumatic Actuator Positioning using Cascaded Finite-time Prescribed Performance Control," in 2021 11th IEEE International Conference on Control System, Computing and Engineering (ICCSCE), Penang, Malaysia, 27-28 Aug. 2021 2021, pp. 131-136, doi: 10.1109/ICCSCE52189.2021.9530956.
  • [21] S. Gao, X. Liu, Y. Jing, and G. M. Dimirovski, "A novel finite-time prescribed performance control scheme for spacecraft attitude tracking," Aerospace Science and Technology, vol. 118, p. 107044, 2021/11/01/ 2021, doi: https://doi.org/10.1016/j.ast.2021.107044.
  • [22] J. Lin, H. Liu, and X. Tian, "Neural network-based prescribed performance adaptive finite-time formation control of multiple underactuated surface vessels with collision avoidance," Journal of the Franklin Institute, vol. 359, no. 11, pp. 5174- 5205, 2022/07/01/ 2022, doi: https://doi.org/10.1016/j.jfranklin.2022.05.048.
  • [23] S. Luo, X. Wu, C. Wei, Y. Zhang, and Z. Yang, "Adaptive finite-time prescribed performance attitude tracking control for reusable launch vehicle during reentry phase: An event triggered case," Advances in Space Research, vol. 69, no. 10, pp. 3814-3827, 2022/05/15/ 2022, doi: https://doi.org/10.1016/j.asr.2022.02.049.
  • [24] M. I. P. Azahar, A. Irawan, and M. S. Ramli, "Finite-Time Prescribed Performance Control for Dynamic Positioning of Pneumatic Servo System," in 2020 IEEE 8th Conference on Systems, Process and Control (ICSPC), Melaka, Malaysia, 11-12 Dec. 2020 2020, pp. 1-6, doi: 10.1109/ICSPC50992.2020.9305755.
  • [25] M. I. P. Azahar, A. Irawan, and R. M. T. R. Ismail, "Self-tuning hybrid fuzzy sliding surface control for pneumatic servo system positioning," Control Engineering Practice, vol. 113, p. 104838, 2021/08/01/ 2021, doi: https://doi.org/10.1016/j.conengprac.2021.104838.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b4fd56bb-2fb3-49c8-a63f-f4a81a8048d5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.