PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microclimate and Water Conditions of an Extracted and Natural Raised Bog

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the study was to assess the hydrological and microclimatic parameters in the areas at different stages of succession after the discontinuation of peat extraction relative to the conditions on a natural raised bog (Orawa-Nowy Targ Basin, Poland). Understanding these conditions is necessary for the effective reclamation of degraded peatlands. Three measurement points were designated in the study area: one on the non-degraded dome of the bog and two in post-mining areas in different stages of succession (Sector A with pine and birch woodland; Sector B with cotton-grass and ericaceous shrubs). Continuous measurements of the water table level, precipitation and air temperature and humidity were performed between May and October in the year 2016. The air temperature throughout the warm half of the year significantly influenced the groundwater levels, as it is the main factor directly affecting evapotranspiration. The effect of the amount of rainfall on the water level proved significant in the post-mining areas, but not significant for the dome of the bog. Under the conditions of an undegraded peat bog, the upper layer, consisting of live and partially decomposed Sphagnum mosses, limits the water level fluctuations by reducing the evaporation from the surface during periods of low water levels, which is caused by a high water storage capacity and reduced infiltration. In advanced stages of secondary forest succession, trees reduce the evapotranspiration from the surface, which reduces fluctuations in the water level; however, by taking up a large amount of water from the deeper layers, they lower it significantly. The greatest effect of the weather conditions on the water level fluctuations occurs at the stage in which the bog is overgrown by shrubs, when there is no natural peat layer, and the impact of shrubs is much smaller than that of trees.
Słowa kluczowe
Rocznik
Strony
115--123
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
  • Department of Ecology, Climatology and Air Protection, Faculty of Environmental Engineering and Land Surveying, University of Agriculture in Krakow, Al. Mickiewicza 24-28, 30-059 Kraków, Poland
  • Department of Ecology, Climatology and Air Protection, Faculty of Environmental Engineering and Land Surveying, University of Agriculture in Krakow, Al. Mickiewicza 24-28, 30-059 Kraków, Poland
  • Department of Land Reclamation and Environmental Development, Faculty of Environmental Engineering and Land Surveying, University of Agriculture in Krakow, Al. Mickiewicza 24-28, 30-059 Kraków, Poland
Bibliografia
  • 1. Aussenac G. 2000. Interactions between forest stands and microclimate: Ecophysiological aspects and consequences for silviculture. Annals of Forest Science, 57, 287–301.
  • 2. Bridgham S.D., Pastor, J., Updegraff, K., Malterer, T.J., Johnson, K., Harth, C., Chen, J. 1999. Ecosystem control over temperature and energy flux in northern peatlands. Ecological Applications, 9, 1345–1358.
  • 3. Caputa Z., Leśniok M. 2009. Struktura bilansu i promieniowania na obszarach miejskich i wiejskich – system pomiarowy i wybrane wyniki pomiarów na Wyżynie Śląsko-Krakowskiej. Prace Geograficzne, IGiGP UJ, 122, 23–38.
  • 4. Chen J., Saunders S.C., Crow T.R., Naiman R.J., Brosofske K.D., Mroz G.D., Brookshire B.L., Franklin J.F. 1999. Microclimate in Forest Ecosystem and Landscape Ecology. Variations in local climate can be used to monitor and compare the effects of different management regimes. BioScience 49(4): 288–297.
  • 5. Davis K.T., Dobrowski S.Z., Holden Z.A., Higuera P.E., Abatzoglou J.T. 2019. Microclimatic buffering in forests of the future: the role of local water balance. Ecography, 42, 1–11.
  • 6. González E., Rochefort L. 2014. Drivers of success in 53 cutover bogs restored by a moss layer transfer technique. Ecological Engineering, 68, 279–290.
  • 7. Kettridge N., Thompson D.K., Bombonato L., Turetsky M.R., Benscoter B.W., Waddington J.M. 2013. The ecohydrology of forested peatlands: Simulating the effects of tree shading on moss evaporation and species composition. Journal of Geophysical Research: Biogeosciences, 118, 422–435.
  • 8. Kondracki J. 2011. Geografia Regionalna Polski. Wydawnictwo Naukowe PWN. Warszawa.
  • 9. Kopcińska J., Skowera B. 2014. The role of relief and land use in shaping thermal conditions of local climate. Electronic Journal of Polish Agricultural Universities, 17(3).
  • 10. Lafleur P.M., Hember R.A., Admiral S.W., Roulet N.T. 2005. Annual and seasonal variability in evapotranspiration and water table at a shrub-covered bog in southern Ontario, Canada. Hydrological Processes, 19, 3533–3550.
  • 11. Leifeld J., Menichetti L. 2018. The underappreciated potential of peatlands in global climate change mitigation strategies /704/47/4113 /704/106/47 article. Nature Communication 9.
  • 12. Limpens J., Holmgren M., Jacobs C.M.J., Van Der Zee S.E.A.T.M., Karofeld E., Berendse F. 2014. How does tree density affect water loss of peatlands? A mesocosm experiment. PLoS ONE, 9.
  • 13. Lipka K., Zając E. 2014. Stratygrafia Torfowisk Kotliny Orawsko-Nowotarskiej. Wydawnictwo Art-Tekst, Kraków.
  • 14. Malec M., Klatka S., Ryczek M., Kruk E. 2016. Zmiany szaty roślinnej torfowiska wysokiego Baligówka pod wpływem działalności człowieka. Ochrona Środowiska i Zasobów Naturalnych Environmental Protection and Natural Resources 27, 4(70), 7–11.
  • 15. Minayeva T.Yu., Bragg O.M., Sirin A.A. 2017. Towards ecosystem-based restoration of peatland biodiversity. Mires and Peat, 19(01), 1–36.
  • 16. Nichols D.S., Brown J.M. 1980. Evaporation from a sphagnum moss surface. Journal of Hydrology, 48, 289–302.
  • 17. Niedźwiedź T. 2017. Kalendarz typów cyrkulacji atmosfery dla Polski południowej – zbiór komputerowy. Uniwersytet Śląski, Katedra Klimatologii, Sosnowiec.
  • 18. Niedźwiedź T. (Ed.). 2006. Słownik meteorologiczny. Polskie Towarzystwo Geofizyczne, Warszawa.
  • 19. Okruszko H. 1995. Influence of Hydrological differentiation of fens on their transformation after dehydratation and on possibilities for restoration. [In:] B.D. Wheeler, S.C. Shaw, W.J. Fojt. R.A. Robertson (Ed.): Restoration of temperate wetlands. John Wiley & Sons, 113–120.
  • 20. Ostrowski J., Okruszko H., Oświt J., Dembek W. 1995. Komputerowa Baza Danych o Mokradłach i Użytkach Zielonych Polski. IMUZ, Falenty.
  • 21. Paszyński J., Miara K., Skoczek J. 1999. Wymiana energii między atmosferą a podłożem jako podstawa kartowania topoklimatycznego. Dok. Geogr. 14, IGiPZ, Warszawa.
  • 22. Price J.S. 1996. Hydrology and Microclimate of a Partly Restored Cutover Bog, Québec. Hydrological Processes, 10, 1263–1272.
  • 23. Price J.S., Heathwaite A.L., Baird A.J. 2003. Hydrological processes in abandoned and restored peatlands: An overview of management approaches. Wetlands Ecology and Management, 11, 65–83.
  • 24. Rewcastle K.E., Moore J.A.M., Henning J.A., Mayes M.A., Patterson C.M., Wang G., Metcalfe D.B., Classen A.T. 2020. Investigating drivers of microbial activity and respiration in a forested bog. Pedosphere, 30, 135–145.
  • 25. Schouwenaars J.M. 1993. Hydrological differences between bogs and bog-relicts and consequences for bog restoration. Hydrobiologia, 265, 7–244.
  • 26. Słowińska S., Słowiński M., Lamentowicz M. 2010. Relationships between local climate and hydrology in Sphagnum mire: Implications for palaeohydrological studies and ecosystem management. Polish Journal of Environmental Studies, 19, 779–787.
  • 27. Zając E, Zarzycki J., Ryczek M. 2018a. Substrate quality and spontaneous revegetation of extracted peatland: case study of an abandoned Polish mountain bog. Mires Peat, 21, 1–14. https://doi.org/10.19189/MaP.2017.OMB.310.
  • 28. Zając E., Zarzycki J., Ryczek M. 2018b. Degradation of peat surface on an abandoned post-extracted bog and implications for re-vegetation. Appl. Ecol. Environ. Res., 16. https://doi.org/10.15666/aeer/1603_33633.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b4f124af-fd30-4093-b3f2-d5dd94f6bf98
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.