PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

First principle calculations of electronic and magnetic properties of Mn-doped CdS (zinc blende): a theoretical study

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The electronic structure and magnetic properties of Mn doped zinc blende cadmium sulfide Cd1-xMnxS (x = 6.25 %) have been studied using spin-polarized density functional theory within the framework of Generalized Gradient Approximation (GGA), its further corrections including Hubbard U interactions (GGA + U) and a model for exchange and correlation potential Tran Blaha modified Becke-Johnson (TB-mBJ). Ferromagnetic interactions have been observed between Mn atoms via S atom due to strong p-d hybridization. The magnetic moments on Mn and its neighboring atoms have also been studied in detail using different charge analysis techniques. It has been observed that p-d hybridization reduced the value of local magnetic moment of Mn in comparison to its free space charge value and produced small local magnetic moments on the nonmagnetic S and Cd host sites. The magnetocrystalline anisotropy in [1 0 0] and [1 1 1] directions as well as exchange splitting parameters N and N have been analyzed to confirm that ferromagnetism exists. We conclude that the ferromagnetic phase in Mn-doped CdS is not stable in “near” configuration but it is stable for “far” configuration. Mn doped CdS is a p-type semiconductor and the d-states at the top of the valence band edge give a very useful material for photoluminescence and magneto-optical devices.
Wydawca
Rocznik
Strony
479--485
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
autor
  • Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
autor
  • University of Gujrat, Gujrat, Pakistan
autor
  • Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
autor
  • University of Gujrat, Gujrat, Pakistan
autor
  • University of Gujrat, Gujrat, Pakistan
autor
  • Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
Bibliografia
  • [1] SALIMIAN S., SHAYESTEH S.F., J. Supercond. Nov. Magn., 6 (2012), 2009.
  • [2] ZHANG C., YAN S., J. Appl. Phys., 4 (2010), 043913.
  • [3] HASANZADEH J., YESTEH S.F., Opt. Appl., 41 (2011), 921.
  • [4] RUXANDRA V., ANTOHE S., J. Appl. Phys., 2 (1998), 727.
  • [5] CHU H.-Y., LIU Z.-X., QIU G.-L., KONG D.-G., WU S.-X., LI Y.-C., DU Z.-L, Chinese Phys. B, 17 (2008), 2478.
  • [6] YANG Z., GAO D., ZHU Z., ZHANG J., SHI Z., ZHANG Z., XUE D., Nanoscale Res. Lett., 1 (2013), 17.
  • [7] CHANDRAMOHAN S., KANJILAL A., STRACHE T., TRIPATHI J.K., SARANGI S.N., SATHYAMOORTHY R., SOM T., Appl. Surf. Sci., 2 (2009), 465.
  • [8] DELIKANLI S., HE S., QIN Y., ZHANG P., ZENG H., ZHANG H., SWIHART M., Appl. Phys. Lett., 13 (2008), 132501.
  • [9] SATO K., KATAYAMA-YOSHIDA H., Semicond. Sci. Tech., 4 (2002) 367.
  • [10] LIU M., DU Y., MA L., JING D., GUO L., Int. J. Hydrogen Energ., 1 (2012), 730.
  • [11] GE X., ZHANG Y., J. Magn. Magn. Mater., 3 (2009), 198.
  • [12] MA Y., DAI Y., HUANG B., Comp. Mater. Sci., 5 (2011), 1661.
  • [13] YANG Z., GAO D., XUE D., Nanoscale Res. Lett., 1 (2013), 17.
  • [14] NAZIR S., IKRAM N., TANVEER M., J. Phys. Chem. A, 20 (2009), 6022.
  • [15] NAZIR S., IKRAM N., SIDDIQI S.A., SAEED Y., SHAUKAT A., RESHAK A.H., Curr. Opin. Solid St. M., 1 (2010), 1.
  • [16] KUMAR S., KUMAR A., AHLUWALIA P.K., First principle study of manganese doped cadmium sulphide sheet, in: MURLI C., BHATTACHARYYA D., GADKARI S.C. (Ed.), AIP Conference Proceedings, AIP, New York, 2014, p. 1732.
  • [17] RANTALA T.T., RANTALA T.S., LANTTO V., VAARA J., Surf. Sci., 352 (1996), 77.
  • [18] NABI A., Comp. Mater. Sci., A (2016), 210.
  • [19] www.scm.com.
  • [20] JI X., LI H., CHENG S., WU Z., DONG Y.X., PENGXUN YAN, Mater. Lett., 17 (2011), 2776.
  • [21] SALMANI E., BENYOUSSEF A., EZ-ZAHRAOUY H., SAIDI E.H., MOUNKACHI O., Chinese Phys. B, 10 (2012), 106601.
  • [22] SRIVASTAVA P., KUMAR P., J. Nanopart. Res., 10 (2011), 5077.
  • [23] ZHANG C., YAN S., WANG P., ZHANG Z., Comp. Mater. Sci., 4 (2008), 710.
  • [24] ANISIMOV V.I., ZAANEN J., ANDERSEN O.K., Phys. Rev. B, 3 (1991), 943.
  • [25] PICKETT W.E., ERWIN S.C., ETHRIDGE E.C., Phys. Rev. B, 3 (1998), 1201.
  • [26] TRAN F., BLAHA P., Phys. Rev. Lett., 22 (2009), 226401.
  • [27] DEV P., XUE Y., ZHANG P., Phys. Rev. Lett., 11 (2008), 117204.
  • [28] KACZKOWSKI J., JEZIERSKI A., Acta Phys. Pol. A, 5 (2009), 924.
  • [29] AMARI S., MECABIH S., ABBAR B., BOUHAFS B., J. Magn. Magn. Mater., 18 (2012), 2800.
  • [30] DÄNE M., KIM S.K., SURH M.P., ÅBERG D., BENEDICT L.X., J. Phys.-Condens. Mat., 26 (2015), 266002.
  • [31] MULLIKEN R.S., J. Chem. Phys., 10 (1955), 1833.
  • [32] HIRSHFELD F.L., Theoret. Chim. Acta, 2 (1977), 129.
  • [33] GUERRA C.F., HANDGRAAF J.W., BAERENDS E.J., BICKELHAUPT F.M., J. Comput. Chem., 2 (2004), 189.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b4f00a70-862d-42dc-9699-eb102da242bf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.