PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Direct inversion for sensitive elastic parameters of deep reservoirs

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The deep reservoir is usually a type of tight reservoir with high pressure, high stress, low permeability and low porosity. The elastic parameters including Poisson’s ratio and Young’s modulus are important sensitive parameters to the tight reservoir, and the Gassmann fuid term is frequently used in the feld of fuid identifcation as a highly sensitive fuid factor. Such parameters can be obtained by the common prestack seismic inversion method, but not directly. It must frst invert for other elastic parameters and then convert them into the Poisson’s ratio, Young’s modulus and Gassmann fuid term by some formula. The errors will be accumulated in the conversion step, and the inversion results will have a large deviation. We propose a one-step inversion method to solve this problem. Firstly, a new form of P-wave refection coefcient equation in terms of Poisson’s ratio, Young’s modulus and Gassmann fuid term is derived which can directly establish the functional relationship between the P-wave refection coefcient and these elastic parameters. Considering seismic data of deep reservoir generally have a lower signal-to-noise ratio (S/N) and the partial angle stack gather has a higher S/N than single angle gather, we then derive a stack impedance equation which is suitable for the partial angle stack gather. By using three stacked impedance inversion data with diferent angle stack ranges, we can directly get the Poisson’s ratio, Young’s modulus and Gassmann fuid term simultaneously. Model and real data tests both prove that the one-step direct inversion method can reduce the cumulative errors efectively and has higher inversion accuracy.
Czasopismo
Rocznik
Strony
1329--1340
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
autor
  • China University of Petroleum, Changping, Beijing 102249, China
  • Research Institute of Petroleum Exploration and Development-Northwest, Petrochina, Lanzhou 730020, Gansu, China
autor
  • Research Institute of Petroleum Exploration and Development-Northwest, Petrochina, Lanzhou 730020, Gansu, China
autor
  • Research Institute of Petroleum Exploration and Development-Northwest, Petrochina, Lanzhou 730020, Gansu, China
autor
  • China University of Petroleum, Changping, Beijing 102249, China
autor
  • Research Institute of Petroleum Exploration and Development-Northwest, Petrochina, Lanzhou 730020, Gansu, China
Bibliografia
  • 1. Aki K, Richards PG (1980) Quantitative seismology: theory and methods, vol 1. WH Freeman & Co, San Francisco, pp 123–192
  • 2. Bortfeld R (1961) Approximation to the reflection and transmission coefficients of plane longitudinal and transverse waves. Geophys Prospect 9(4):485–502. https://doi.org/10.1111/j.1365-2478.1961.tb01670.x
  • 3. Castagna JP, Batzle ML, Eastwood RO (1985) Relationships between compressional-wave and shear-wave velocities in clastic silicate rocks. Geophysics 50(4):571–581. https://doi.org/10.1190/1.1441933
  • 4. Connolly P (1999) Elastic impedance. Lead Edge 18(4):438–452. https://doi.org/10.1190/1.1438307
  • 5. Fatti JL, Smith GC, Vail PJ, Strauss PJ, Levitt PR (1994) Detection of gas in sandstone reservoirs using AVO analysis: a 3-D seismic case history using the Geostack technique. Geophysics 59(9):1362–1376. https://doi.org/10.1190/1.1443695
  • 6. Feng H, Russell BH, Bancroft JC (2007) A comparison of hydrocarbon indicators derived from AVO analysis. Consort Res Elastic Wave Explor Seismol Res Rep 19:1–9. https://doi.org/10.1190/1.2792426
  • 7. Goodway B, Chen T, Downton J (1997) Improved AVO fluid detection and lithology discrimination using Lamé petrophysical parameters; “λρ”, “μρ”, & “λ/μ fluid stack”, from p and s inversions. SEG Technical Program Expanded Abstracts, pp 183–186. https://doi.org/10.1190/1.1885795
  • 8. Gray D (1999) Bridging the gap: using AVO to detect changes in fundamental elastic constants. SEG Technical Program Expanded Abstracts, pp 852–855. https://doi.org/10.3997/2214-4609.201407877
  • 9. Gui JY, Gao JH, Li SJ, Wang WL (2014) Using the stack impedance equation to invert elastic parameters. In: 76th EAGE conference and exhibition. https://doi.org/10.3997/2214-4609.20141045
  • 10. Harris NB, Miskimins JL, Mnich CA (2011) Mechanical anisotropy in the woodford shale, Permian Basin: origin, magnitude, and scale. Geophysics 30(3):284–291. https://doi.org/10.1190/1.3567259
  • 11. Hilterman F (2001) Seismic amplitude interpretation Distinguished instructor short course. Geophysical Development Corporation, Houston
  • 12. Latimer RB, Davidson R, Riel PV (2000) An interpreter’s guide to understanding and working with seismic-derived acoustic impedance. Lead Edge 19(3):242–256. https://doi.org/10.1190/1.1438580
  • 13. Li H, Cui XF, Huang WF (2008) Stack impedance. SEG Technical Program Expanded Abstracts, pp 2021–2025. https://doi.org/10.1190/1.3059289
  • 14. Liu XJ, Yin XY (2014) Direct estimation for fluid factor by two term AVO inversion for deep reservoir. SEG Technical Program Expanded Abstracts, pp 574–579. https://doi.org/10.1190/segam2014-0507.1
  • 15. Ma M, Zhang R, Yuan SY (2019) Multichannel impedance inversion for nonstationary seismic data based on the modified alternating direction method of multipliers. Geophysics 84(1):A1–A6. https://doi.org/10.1190/geo2018-0319.1
  • 16. Mallick S (2001) AVO and elastic impedance. Lead Edge 20(10):1094–1104. https://doi.org/10.1190/1.1487239
  • 17. Nebojsa T, Nina G (2017) Well-log based rock physics template of the Vienna Basin and the underlying Calcereous Alps. Acta Geophys 65:441–451. https://doi.org/10.1007/s11600-017-0037-6
  • 18. Russell BH, Gray D, Hampson DP (2011) Linearized AVO and poroelasticity. Geophysics 76(3):C19–C29. https://doi.org/10.1190/1.3555082
  • 19. Sena A, Castillo G, Chesser K, Voisey S, Estrada J, Carcuz J, Carmona E, Hodgkins P (2011) Seismic reservoir characterization in resource shale plays: stress analysis and sweet spot discrimination. Lead Edge 30(7):758–764. https://doi.org/10.1190/1.3609090
  • 20. Shi PD, Yuan SY, Wang TY, Wang YY, Liu T (2018) Fracture identification in a tight sandstone reservoir: a seismic anisotropy and automatic multisensitive attribute fusion framework. IEEE Geosci Remote Sens Lett 15(10):1525–1529. https://doi.org/10.1109/LGRS.2018.2853631
  • 21. Shuey RT (1985) A simplification of the Zoeppritz equations. Geophysics 50(4):609–614. https://doi.org/10.1190/1.1441936
  • 22. Smith GC, Gidlow PM (1987) Weighted stacking for rock property estimation and detection of gas. Geophys Prospect 35(5):993–1014. https://doi.org/10.1111/j.1365-2478.1987.tb00856.x
  • 23. Wang SX, Yuan SY, Wang TY, Gao JH, Li SJ (2018) Three-dimensional geosteering coherence attributes for deep-formation discontinuity detection. Geophysics 83(6):O105–O113. https://doi.org/10.1190/geo2017-0642.1
  • 24. Yuan SY, Wang SX, Ma M, Ji YZ, Den L (2017) Sparse Bayesian learning-based time-variant deconvolution. IEEE Trans Geosci Remote Sens 55(11):6182–6194. https://doi.org/10.1109/TGRS.2017.2722223
  • 25. Yuan SY, Liu Y, Zhang Z, Luo CM, Wang SX (2019a) Prestack stochastic frequency-dependent velocity inversion with rock-physics constraints and statistical associated hydrocarbon attributes. IEEE Geosci Remote Sens Lett 16(1):140–144. https://doi.org/10.1109/LGRS.2018.2868831
  • 26. Yuan SY, Wang SX, Luo YN, Wei WW, Wang GC (2019b) Impedance inversion by using the low-frequency full-waveform inversion result as a priori model. Geophysics. https://doi.org/10.1190/geo2017-0643.1
  • 27. Zhang S, Yin X, Zhang F (2009) Fluid discrimination study from fluid elastic impedance (FEI). SEG Technical Program Expanded Abstracts, pp 2437–2441. https://doi.org/10.1190/1.3255350
  • 28. Zhang GL, Hao CT, Yao C (2018) Analytical study of the reflection and transmission coefficient of the submarine interface. Acta Geophys 66:449–460. https://doi.org/10.1007/s11600-018-0153-y
  • 29. Zoeppritz K (1919) On the reflection and penetration of seismic waves through unstable layers. Goettinger Nachr 1:66–84
  • 30. Zong Z, Yin X, Wu G (2013) Elastic impedance parameterization and inversion with young’s modulus and poisson’s ratio. Geophysics 78(6):N35–N42. https://doi.org/10.1190/geo2012-0529.1
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b4efda3e-a6f4-408d-89ba-deff3d739798
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.