Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The present study is carried out to investigate the effects of shape factor nanoparticles on the oscillatory MHD flow of a nanofluid in two immiscible liquids in a horizontal porous channel with velocity and thermal slip on the walls. Thermal radiation, Joule heating, viscous and Darcy dissipations have been accounted for in the model. We have considered and as nanoparticles, in the lower region (Region-I) and upper region (Region-II) respectively, with water as a base fluid. The effective ratio of thermal conductivity of the nanofluid is evaluated using the Maxwell-Garnetts model. Graphical behavior of velocity, temperature, and rate of heat transfer distributions have been depicted for the cases of slip and no-slip effects. This study has been made to understand the impact of different nanoparticle shape factors on temperature and heat transfer rate. For various parameters, values of shear stress distribution at the walls and the mass flux are shown in tabular form. Our study asserts that with the increase of the strength of the magnetic field, the velocity of the liquid falls and enhances the temperature of the liquid. The influence of different combinations of nanoparticles, on the flow variables, have also been discussed. In order to validate the analytical results, the numerical evaluation of the closed-form results, for the velocity distribution, has been compared with those of the numerical method, by using the NDSolve command in MATHEMATICA, and a good agreement is observed.
Rocznik
Tom
Strony
105--129
Opis fizyczny
Bibliogr. 63 poz., tab., wykr.
Twórcy
autor
- Department of Mathematics, VIT-AP University, Inavolu, Amaravathi-522237, Andhra Pradesh, INDIA
autor
- Department of Mathematics, VIT-AP University, Inavolu, Amaravathi-522237, Andhra Pradesh, INDIA
autor
- Department of Mathematics, VIT-AP University, Inavolu, Amaravathi-522237, Andhra Pradesh, INDIA
autor
- University of Central Florida, FL32816, Orlando, USA
Bibliografia
- [1] Wang C. and Cheng. P. (1997): Multiphase flow and heat transfer in porous media.– Advances in Heat Transfer, vol.30, Elsevier, pp.93-196.
- [2] Packham B. and Shall R. (1971): Stratified laminar flow of two immiscible fluids.– Mathematical Proceedings of Cambridge Philosophical Society, vol.69, Cambridge University Press, pp.443-448.
- [3] Muzumdar A. (1980): Advances in Transport Process, vol.1., John Wiley and Sons Ltd.
- [4] Bestman A. (1982): Pulsatile flow in heated porous channel.– International Journal of Heat and Mass Transfer, vol.25, No.5, pp.675-682.
- [5] Bussemer T., Otto. I. and Bodmeier R. (2001): Pulsatile drug-delivery systems.– Critical Reviews in Therapeutic Drug Carrier Systems, vol.18, No.5., pp.26.
- [6] Zamir M. and Budwig R. (2002): Physics of pulsatile flow.– Appl. Mech. Rev., vol.55, No.2, https://doi.org/10.1115/1.1451229.
- [7] Chen C., Lin T., Ali. H.M., Amani P. and Yan W.M. (2019): Bubble dynamics in evaporation flow of r-134a in narrow annular ducts due to flow rate oscillation.– International Communications in Heat and Mass Transfer, vol.100, pp.27-34.
- [8] Mladin E.C. and Zumbrunnen D.A. (2000): Alterations to coherent flow structures and heat transfer due to pulsations in an impinging air-jet.– International Journal of Thermal Sciences, vol.39, No.2, pp.236-248.
- [9] Radhakrishnamacharya G. and Maiti M. (1977): Heat transfer to pulsatile flow in a porous channel.– International Journal of Heat and Mass Transfer, vol.20, No.2, pp.171-173.
- [10] Ye Q., Zhang Y. and Wei J. (2021): A comprehensive review of pulsating flow on heat transfer enhancement.– Applied Thermal Engineering, vol.196, p.117275.
- [11] Kumar P.B. and Suripeddi S. (2021): A note on the pulsatile flow of hydromagnetic Eyring-Powell nanofluid through a vertical porous channel.– The European Physical Journal Special Topics, vol.230, pp.1465-1474.
- [12] Ezzat M.A. and El-Bary A.A. (2016): Effects of variable thermal conductivity on Stokes' flow of a thermoelectric fluid with fractional order of heat transfer.– International Journal of Thermal Sciences, vol.100, pp.305-315.
- [13] Choi E.J., Ahn Y. and Do Her Y. (2007): Size dependence of magnetic properties of co-ferrite nanoparticles.– Journal of the Korean Physical Society, vol.50, No.2, pp.460-463.
- [14] Yoo D.H., Hong K., Hong T., Eastman J. and Yang H.S. (2007): Thermal conductivity of Al2O 3/water nanofluids.– Journal of the Korean Physical Society, vol.51, No.1., pp.84-87., https://doi.org/10.3938/jkps.51.84.
- [15] Eastman J.A., Choi U., Li S., Thompson L. and Lee S. (1996): Enhanced thermal conductivity through the development of nanofluids.– MRS Online Proceedings Library, vol.457, p.3.
- [16] Xie H., Wang J., Xi T., Liu Y., Ai F. and Wu Q. (2002): Thermal conductivity enhancement of suspensions containing nanosized alumina particles.– Journal of Applied Physics, vol.91, No.7, pp.4568-4572.
- [17] Nield D. and Kuznetsov A., (2009): The Cheng-Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid.– International Journal of Heat and Mass Transfer, vol.52, No.25-26, pp.5792-5795.
- [18] Philip J. and Shima P.D. (2012): Thermal properties of nanofluids.– Advances in Colloid and Interface Science, vol.183, pp.30-45.
- [19] Bachok N., Ishak A. and Pop I. (2012): Boundary layer flow over a moving surface in a nanofluid with suction or injection.– Acta Mechanica Sinica, vol.28, pp.34-40.
- [20] Kasaeian A., Daneshazarian R., Mahian O., Kolsi L., Chamkha A.J., Wongwises S. and Pop I.(2017): Nanofluid flow and heat transfer in porous media: a review of the latest developments.– International Journal of Heat and Mass Transfer, vol.107, pp.778-791.
- [21] Khanafer K. and Vafai K. (2019): Applications of nanofluids in porous medium: A critical review.– Journal of Thermal Analysis and Calorimetry, vol.135, pp.1479-1492.
- [22] Vafai K. and Tien C.L., (1981): Boundary and inertia effects on flow and heat transfer in porous media.– International Journal of Heat and Mass Transfer, vol.24, No.2, pp.195-203.
- [23] Khaled A.R. and Vafai K. (2003): The role of porous media in modeling flow and heat transfer in biological tissues.– International Journal of Heat and Mass Transfer, vol.46, No.26, pp.4989-5003.
- [24] Cimpean D.S. and Pop I., (2012): Fully developed mixed convection flow of a nanofluid through an inclined channel filled with a porous medium.– International Journal of Heat and Mass Transfer, vol.55, No.4, pp.907-914.
- [25] Chamkha A.J. and Ismael M.A. (2014): Natural convection in differentially heated partially porous layered cavities filled with a nanofluid.– Numerical Heat Transfer, Part A: Applications, vol.65, No.11, pp.1089-1113.
- [26] Zhang C., Zheng L., Zhang X. and Chen G. (2015): Mhd flow and radiation heat transfer of nanofluids in porous media with variable surface heat flux and chemical reaction.– Applied Mathematical Modelling, vol.39, No.1, pp.165-181.
- [27] Vijayalakshmi A. and Srinivas S., (2017): A study on the hydromagnetic pulsating flow of a nanofluid in a a porous channel with thermal radiation.– Journal of Mechanics, vol.33, No.2, pp.213-224.
- [28] Umavathi J. and Hemavathi K. (2019): Flow and heat transfer of composite porous medium saturated with nanofluid.– Propulsion and Power Research, vol.8, No.2, pp.173-181.
- [29] Nazeer M., Ali N., Ahmad F. and Latif M. (2020): Numerical and perturbation solutions of third-grade fluid in a porous channel: boundary and thermal slip effects.– Pramana, vol.94, pp.1-15.
- [30] Ezzat M.A., El-Bary A.A. and Morsey M.M. (2010): Space approach to the hydro-magnetic flow of a dusty fluid through a porous medium.– Computers & Mathematics with Applications, vol.59, No.8, pp.2868-2879.
- [31] Daniel Y.S., Aziz Z.A., Ismail Z. and Salah F. (2017): Effects of thermal radiation, viscous and Joule heating on electrical MHD nanofluid with double stratification.– Chinese Journal of Physics, vol.55, No.3, pp.630-651.
- [32] Govindarajulu K. and Subramanyam Reddy A. (2022): Magnetohydrodynamic pulsatile flow of third-grade hybrid nanofluid in a porous channel with Ohmic heating and thermal radiation effects.– Physics of Fluids, vol.34, No.1, p.013105.
- [33] Wahid N.S., Arifin N.M., Pop I., Bachok N. and Hafidzuddin M.E.H. (2022): MHD stagnation-point flow of nanofluid due to a shrinking sheet with melting, viscous dissipation, and Joule heating.– Alexandria Engineering Engineering Journal, vol.61, No.12, pp.12661-12672.
- [34] Hayat T., Sajjad R., Abbas Z., Sajid M. and Hendi A.A. (2011): Radiation effects on MHD flow of Maxwell fluid in a channel with porous medium.– International Journal of Heat and Mass Transfer, vol.54, No.4, pp.584-862.
- [35] Hatami M., Nouri R. and Ganji D., (2013): Forced convection analysis for MHD Al2O 3-water nanofluid flow over a horizontal plate.– Journal of Molecular Liquids, vol.187, pp.294-301.
- [36] Sheikholeslami M., Ganji D.D., Javed M.Y. and Ellahi R. (2015): Effect of thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer by means of a two-phase model.– Journal of Magnetism and Magnetic Materials, vol.374, pp.36-43.
- [37] Sandeep N. and Reddy M.G. (2017): Heat transfer of nonlinear radiative magnetohydrodynamic Cu-water nanofluid flow over two different geometries.– Journal of Molecular Liquids, vol.225, pp.87-94.
- [38] Ezzat M., El-Bary A.A. and Ezzat S. (2011): Combined heat and mass transfer for unsteady MHD flow of perfect conducting micropolar fluid with thermal relaxation.– Energy Conversion and Management, vol.52, No.2, pp.934-945.
- [39] Raisi A., Ghasemi B. and Aminossadati S. (2011): A numerical study on the forced convection of laminar nanofluid in a microchannel with both slip and no-slip conditions.– Numerical Heat Transfer, Part A: Applications, vol.59, No.2, pp.114-129.
- [40] Bitla P. and Iyengar T., (2013): Effects of slip on the pulsating flow of an incompressible micropolar fluid through a porous medium between two parallel plates.– Journal of Porous Media, vol.16, No.8., pp.769-775., DOI:10.1615/JPorMedia.v16.i8.70.
- [41] Adesanya S.O. and Makinde O.D. (2014): MHD oscillatory slip flow and heat transfer in a channel filled with porous media.– UPB Sci. Bull. Series A, vol.76, pp.197-204.
- [42] Srinivas S., Vijayalakshmi A., Reddy A.S. and Ramamohan T. (2016): MHD flow of a nanofluid in an expanding or contracting porous pipe with chemical reaction and heat source/sink.– Propulsion and Power Research, vol.5, No.2, pp.134-148.
- [43] Vijayalakshmi A. and Srinivas S. (2016): Asymmetric flow of a nanofluid between expanding or contracting permeable walls with thermal radiation.– Frontiers in Heat and Mass Transfer, vol.7, No.10, pp.1-11.
- [44] Sucharitha G., Lakshminarayana P. and Sandeep N. (2017): Joule heating and wall flexibility effects on the peristaltic flow of magnetohydrodynamic nanofluid.– International Journal of Mechanical Sciences, vol.131, pp.52-62.
- [45] Goodarzi M., Javid S., Sajadifar A., Nojoomizadeh M., Motaharipour S.H., Bach Q.V. and Karimipour A. (2018): Slip velocity and temperature jump of a non-newtonian nanofluid, aqueous solution of carboxymethyl cellulose/aluminum oxide nanoparticles, through a microtube.– International Journal of Numerical Methods for Heat & Fluid Flow, vol.29, No.5, pp.1606-1628.
- [46] Qi W., Wang M. and Su Y. (2002): Size effect on the lattice parameters of nanoparticles.– Journal of Materials Science Letters, vol.21, pp.877-878.
- [47] Qi W., Wang M. and Xu G. (2003): Erratum to the particle size dependence of cohesive energy of metallic nanoparticles.– Chemical Physics Letters, vol.3, No.376, p.538.
- [48] Nanda K., Sahu S., and Behera S. (2002): Liquid-drop model for the size-dependent melting of low-dimensional systems.– Physical review A, vol.66, No.1, p.013208.
- [49] Chamkha A.J., Dogonchi A. and Ganji D. (2018): Magnetohydrodynamic nanofluid natural convection in a cavity under thermal radiation and shape factor of nanoparticles impacts: a numerical study using cvfem.– Applied Sciences, vol.8, No.12, p.2396.
- [50] Sobamowo G. (2019): Free convection flow and heat transfer of nanofluids of different shapes of nano- sized particles over a vertical plate at low and high Prandtl numbers.– Journal of Applied and Computational Mechanics, vol.5, No.1, pp.13-39.
- [51] Shah Z., Babazadeh H., Kumam P., Shafee A. and Thounthong P. (2019): Numerical simulation of magnetohydrodynamic nanofluids under the influence of shape factor and thermal transport in a porous media using cvfem.– Frontiers in Physics, vol.7, p.164.
- [52] Dogonchi A.S., Armaghani T., Chamkha A.J. and Ganji D. (2019): Natural convection analysis in a cavity with an inclined elliptical heater subject to shape factor of nanoparticles and magnetic field.– Arabian Journal for Science and Engineering, vol.44, pp.7919-7931.
- [53] Cele T. (2020): Preparation of Nanoparticles.– Engineered Nanomaterials-Health and Safety.
- [54] Hazarika S., Ahmed S. and Chamkha A.J. (2021): Investigation of nanoparticles , , 3 4Cu Ag Fe O on thermophoresis and viscous dissipation of MHD nanofluid over a stretching sheet in a porous regime: a numerical modeling.– Mathematics and Computers in Simulation, vol.182, pp.819-837.
- [55] Ananth Subray P., Hanumagowda B., Varma S. and Hatami M. (2022): The impacts of shape factor and heat transfer on the two-phase flow of nano and hybrid nanofluid in a saturated porous medium.– Scientific Reports, vol.12, No.1, p.21864.
- [56] Saranya S. and Al-Mdallal Q.M., (2021): Computational study on nanoparticle shape effects of Al2O 3 -slicon oil nanofluid flow over a radially stretching rotating disk.– Case Studies in Thermal Engineering, vol.25, p.100943.
- [57] Zubair T., Usman M., Nisar K.S., Hamid M., Mahmoud E.E. and Yahia I. (2022): Investigation of shape effects of Cu-nanoparticle on heat transfer of MHD rotating flow over a nonlinear stretching sheet.– Alexandria Engineering Journal, vol.61, No.6, pp.4457-4466.
- [58] Akbar A.A., Ahammad N.A., Awan A.U., Hussein A.K., Gamaoun F., Tag-Eldin E.M. and Ali B. (2022): Insight into the role of nanoparticle shape factors and diameter on the dynamics of rotating water-based fluid.– Nanomaterials, vol.12, No.16, p.2801.
- [59] Chamkha A.J., Umavathi J.C. and Mateen A., (2004): Oscillatory flow and heat transfer in two immiscible fluids.– International Journal of Fluid Mechanics Research, vol.31, No.1., pp.24, DOI: 10.1615/InterJFluidMechRes.v31.i1.20.
- [60] Umavathi J., MatPrandtl Chamkha A.J. and Al-Mudhaf A. (2006): Oscillatory Hartmann two-fluid flow and heat transfer in a horizontal channel.– International Journal of Applied Mechanics and Engineering, vol.11, No.1, pp.155-178.
- [61] Padma Devi M. and Srinivas S. (2022): Thermal characteristics on two immiscible fluid flow in a porous space with a time-dependent pressure gradient.– Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, vol.236, No.6, pp.2480-2490.
- [62] Devi M.P. and Srinivas S. (2023): Two layered immiscible flow of viscoelastic liquid in a vertical porous channel with hall current, thermal radiation, and chemical reaction.– International Communications in Heat and Mass Transfer, vol.142, p.106612.
- [63] Hamilton R.L. and Crosser O. (1962): Thermal conductivity of heterogeneous two-component systems.– Industrial & Engineering Chemistry Fundamentals, vol.1, No.3, pp.187-191.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b4ef9c54-f98e-427d-ad65-87a19445717a