PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Physicochemical Properties of Sea Water and Bittern in Indonesia: Quality Improvement and Potential Resources Utilization for Marine Environmental Sustainability

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The traditional salt production in Indonesia was investigated to report the preparation and processing of salt, determine the characteristics of sea water and bittern as well as explore the potential of bittern management with appropriate technology. Field study and comprehensive analysis were performed so as to better understand the salt making, providing valuable information for the proposal of targeted management strategies in salt quality improvement and wastewater recovery. The results show that Na+, Cl and Ca2+ in East Java Province seawater were found greater than the majority of values found in the literature. The highest concentrations of Na+, Cl and Ca2+ were measured in Camplong-Sampang District. The highest concentrations of Mg2+ and trace metals were recorded in Panceng-Gresik District. The trace metals found in sea water and bittern need particular concern to be removed without disposing of sea water minerals. The potential number of bittern in Indonesia promoted the development of the bittern management for magnesium recovery and achieving marine environment sustainability. High purified material recovery can be achieved by using crystallization technology.
Słowa kluczowe
Rocznik
Strony
1--10
Opis fizyczny
Bibliog. 26 poz., tab., rys.
Twórcy
autor
  • Department of Environmental Engineering, Faculty of Civil, Environment and Geo Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, Indonesia
  • Study program of Safety Engineering, Politeknik Perkapalan Negeri Surabaya, Kampus ITS Sukolilo, Surabaya 60111, Indonesia
autor
  • Department of Environmental Engineering, Faculty of Civil, Environment and Geo Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, Indonesia
autor
  • Department of Environmental Engineering, Faculty of Civil, Environment and Geo Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, Indonesia
Bibliografia
  • 1. Aziz H.A., Adlan M.N. and Ariffin K.S. 2008. Heavy metals (Cd , Pb , Zn , Ni , Cu and Cr ( III)) removal from water in Malaysia: Post treatment by high quality limestone. Bioresource Technology, 99, 1578–1583.
  • 2. Apriani M., Masduqi A. and Hadi W. 2016. Degradation of organic, iron, color and turbidity. ARPN Journal of Engineering and Applied Sciences, 11(13), 8132–8138.
  • 3. Babel S. & Kurniawan T.A. 2003. Low-cost adsorbents for heavy metals uptake from contaminated water: A review. Journal of Hazardous Materials, B97, 219–243.
  • 4. Blais J.F., Djedidi Z., Cheikh B.R., Tyagi D. and Mercier G. 2008. Metals Precipitation from Effluents: Review. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 12(3), 135–149.
  • 5. Chen C.S., Shih Y.J. and Huang Y.H. 2015. Remediation of lead (Pb(II)) wastewater through recovery of lead carbonate in a fluidized-bed homogeneous crystallization (FBHC) system. Chemical Engineering Journal, 279, 120–128.
  • 6. Estefan S.F. 1983. Controlled phase equilibria for the chemical utilization of sea-bitterns. Hydrometallurgy, 10(1), 39–45.
  • 7. Fu F. and Wang Q. 2011. Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92(3), 407–418.
  • 8. Haga M., Niino Y., Nishimura H. and Seki H. 2005. Quality of bittern products. Journal of Cookery Science of Japan, 38, 281–285.
  • 9. Hajdu I., Bodnár M., Csikós Z., Wei S., Daróczi L., Kovács B., Györi Z., Tamás T. and Borbély J. 2012. Combined nano-membrane technology for removal of lead ions. Journal of Membrane Science, 409– 410, 44–53.
  • 10. Huang H., Xiao D., Pang R., Han C. and Ding L. 2014. Simultaneous removal of nutrients from simulated swine wastewater by adsorption of modified zeolite combined with struvite crystallization. Chemical Engineering Journal, 256, 431–438.
  • 11. Hussein A.A., Zohdy K. and Abdelkreem M. 2017. seawater bittern a precursor for magnesium chloride separation: Discussion and assessment of case studies. International Journal of Waste Resources, 7(1), 1–6.
  • 12. Kasedde H., Kirabira J.B., Bäbler M.U., Tilliander A. & Jonsson S. 2014. Characterization of brines and evaporites of Lake Katwe, Uganda. Journal of African Earth Sciences, 91, 55–65.
  • 13. Li X.Z. and Zhao Q.L. 2002. MAP Precipitation from Landfill Leachate and Seawater Bittern Waste. Environmental Technology, 23(9), 989–1000.
  • 14. Liu B., Giannis A., Zhang J., Chang V.W.-C. and Wang J-Y. 2013. Characterization of induced struvite formation from source-separated urine using seawater and brine as magnesium sources. Chemosphere, 93, 2738–2747.
  • 15. Lu H., Wang J., Wang T., Wang N., Bao Y. and Hao H. 2017. Crystallization techniques in wastewater treatment: An overview of applications. Chemosphere, 173, 474–484.
  • 16. Lozano J.A.F & Sanvicente L. 2002. Multinutrient phosphate-based fertilizers from seawater bitterns. Interciencia, 27(9), 496–499.
  • 17. Lychnos G., Fletcher, J.P. and Davies, P.A. 2010. Properties of seawater bitterns with regard to liquid-desiccant cooling. Desalination, 250(1), 172–178.
  • 18. Ministry of Maritime Affairs and Fisheries. 2017. KKP news about World Ocean Summit Panel “What Comes Next: A Call for Commitments on February, 24 2017.available from: http://news. kkp.go.id (accessed 12.12.17).
  • 19. Ministry of Maritime Affairs and Fisheries, 2013. Profil keluatan dan perikanan Propinsi Jawa Timur untuk mendukung industrialisasi kelautan perikanan (East Java marine and fishery profile to support marine and fishery industrialization), Center for Data Statistics and Information Secretariat General of the Ministry of Maritime Affairs and Fisheries.
  • 20. Pervov A.G. 2015. Precipitation of calcium carbonate in reverse osmosis retentate flow by means of seeded techniques–A tool to increase recovery. Desalination, 368, 140–151.
  • 21. Rodrigues C.M., Bio A., Amat F. and Vieiral N. 2011. Artisanal salt production in Aveiro/Portugal-an ecofriendly process. Saline Systems, 7(1), 3.
  • 22. Setyaningrum R., Suprijono H., Anomsari A. and Hartini E. 2014. Pengembangan Model PUGAR Berbasis Sustainable Manufacturing Untuk Mensukseskan Swasembada Garam Industri (PUGAR model development-based sustainable manufacturing to succeed salt industry self suffiency), Report for competitive research grants Ministry of Education and Culture, Indonesia.
  • 23. Su C., Dulfo L.D.D., Dalida M.L.P. and Lu M.C. 2014. Magnesium phosphate crystallization in a fluidized-bed reactor: Effects of pH, Mg, P molar ratio and seed. Separation and Purification Technology, 125, 90–96.
  • 24. Su C., Reano R.L., Dalida M.L.P. and Lu M.C. 2014. Barium recovery by crystallization in a fluidized-bed reactor: Effects of pH, Ba/P molar ratio and seed. Chemosphere, 105, 100–105.
  • 25. Susanto H., Rokhati N. and Santosa G.W. 2015. Development of traditional salt production process for improving product quantity and quality in Jepara District, Central Java, Indonesia. Procedia Environmental Sciences, 23, 175–178.
  • 26. Tewari A., Joshi H.V., Raghunathan C., Trivedi R.H. and Ghosh P.K. 2003. The effect of sea brine and bittern on survival and growth mangrove Avicennia marina (Dicotyledones: Avicenniaceae). Indian Journal of Marine Sciences, 32(1), 52–55.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b4ec8f5f-18e7-4cc7-9169-714dd4c0fe7e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.