PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Environmental footprint and water footprint in studies on the impact of agricultural production on the natural environment

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ślad środowiskowy i ślad wodny w badaniach nad oddziaływaniem produkcji rolniczej na środowisko naturalne
Języki publikacji
EN
Abstrakty
EN
In the face of growing challenges related to climate change, environmental degradation, and limited natural resources, the assessment of the environmental impact of various economic sectors is becoming increasingly important. Agriculture, as one of the key branches of food production, significantly contributes to environmental degradation, water resource consumption, and ecosystem transformation. In this context, the concepts of Environmental Footprint (EF) and Water Footprint (WF) are particularly important, serving as tools for the quantitative assessment of the pressure exerted by agricultural production on the environment. The environmental footprint encompasses various impact indicators, such as greenhouse gas emissions, eutrophication, acidification, abiotic resource consumption, and biodiversity loss. The water footprint, on the other hand, focuses on quantifying freshwater use throughout the product life cycle, considering blue, green, and grey water. The combined use of these tools allows for a comprehensive analysis of the impact of agricultural practices on the natural environment and the identification of areas requiring improvement towards sustainable development. Consequently, they help shape environmental policies and sustainable resource management strategies. The aim of this article is to present current methods for assessing environmental and water footprints in agricultural production and to discuss the main factors influencing their values. The article also presents the current state of research in this field and practical examples of how these tools are applied in evaluating different farming systems.
PL
W obliczu rosnących wyzwań związanych ze zmianami klimatu, degradacją środowiska oraz ograniczonymi zasobami naturalnymi, coraz większe znaczenie zyskuje ocena wpływu różnych sektorów gospodarki na środowisko. Rolnictwo, jako jedna z kluczowych gałęzi produkcji żywności, ma istotny udział w degradacji środowiska, zużyciu zasobów wodnych oraz przekształceniach ekosystemów. W tym kontekście szczególnego znaczenia nabierają pojęcia śladu środowiskowego (Environmental Footprint, EF) oraz śladu wodnego (Water Footprint, WF), które stanowią narzędzia służące do ilościowej oceny presji wywieranej przez produkcję rolniczą na środowisko. Ślad środowiskowy obejmuje szeroki zakres wskaźników oddziaływania, takich jak emisja gazów cieplarnianych, eutrofizacja, zakwaszenie, zużycie zasobów abiotycznych czy wpływ na różnorodność biologiczną. Z kolei ślad wodny skupia się na ilościowym określeniu zużycia wody słodkiej w całym cyklu życia produktu, z uwzględnieniem wody niebieskiej, zielonej i szarej. Wspólne zastosowanie tych narzędzi umożliwia kompleksową analizę wpływu praktyk rolniczych na środowisko naturalne, a także identyfikację obszarów wymagających poprawy w kierunku zrównoważonego rozwoju, w konsekwencji kształtowanie polityki środowiskowej oraz strategii zrównoważonego zarządzania zasobami. Celem niniejszego artykułu jest przedstawienie aktualnych metod oceny śladu środowiskowego i śladu wodnego w produkcji rolniczej oraz omówienie głównych czynników wpływających na ich wartość. W artykule zaprezentowany zostanie również aktualny stan badań w tej dziedzinie oraz przykłady praktycznych zastosowań tych narzędzi w ocenie różnych systemów rolniczych.
Rocznik
Strony
263--295
Opis fizyczny
Bibliogr. 49 poz., tab., wykr.
Twórcy
  • Department of Production Engineering, Logistics and Applied Computer Science, Faculty of Production and Power Engineering, University of Agriculture in Kraków, Balicka 116B, 30-149 Kraków, Poland
  • Department of Production Engineering, Logistics and Applied Computer Science, Faculty of Production and Power Engineering, University of Agriculture in Kraków, Balicka 116B, 30-149 Kraków, Poland
  • Faculty of Technical Sciences and Design Arts, National Academy of Applied Sciences in Przemyśl, Książąt Lubomirskich 6, 37-700 Przemyśl
autor
  • Department of Environmental and Forestry Machinery, Faculty of Technology, Technical University in Zvolen, T. G. Masaryka 24, 960 01 Zvolen, Slovakia
autor
  • Department of Environmental and Forestry Machinery, Faculty of Technology, Technical University in Zvolen, T. G. Masaryka 24, 960 01 Zvolen, Slovakia
Bibliografia
  • Alhashim, R., Deepa, R., Anandhi, A. (2021). Environmental impact assessment of agricultural production using LCA: a review. Climate, 9(11), 164.
  • Bibi, F., Rahman, A. (2023). An overview of climate change impacts on agriculture and their mitigation strategies. Agriculture, 13(8), 1508.
  • Birkved, M., Hauschild, M. Z. (2006). PestLCI-a model for estimating field emissions of pesticides in agricultural LCA. Ecological modelling, 198(3-4), 433-451.
  • Boulay, A. M. et al. (2015). Analysis of water use impact assessment methods (part A): Evaluation of modeling choices based on a quantitative comparison of scarcity and human health indicators. Int. J. Life Cycle Assess. 20, 139-160. https://doi.org/10.1007/s11367- 014-0814-2.
  • Brentrup, F., Küsters, J., Lammel, J., Barraclough, P., Kuhlmann, H. (2004). Environmental impact assessment of agricultural production systems using the life cycle assessment (LCA) methodology II. The application to N fertilizer use in winter wheat production systems. European Journal of Agronomy, 20(3), 265-279.
  • Brentrup, F., Küsters, J., Lammel, J., Kuhlmann, H. (2000). Methods to estimate on-field nitrogen emissions from crop production as an input to LCA studies in the agricultural sector. The international journal of life cycle assessment, 5(6), 349-357.
  • Clark, M., Tilman, D., (2017). Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environ. Res. Lett. 12, 064016. https://iopscience.iop.org/article/10.1088/1748- 9326/aa6cd5/meta.
  • Dehghani, M. H., Ahmadi, S., Ghosh, S., Khan, M. S., Othmani, A., Khanday, W. A., Ansari, K. (2024). Sustainable remediation technologies for removal of pesticides as organic micro-pollutants from water environments: A review. Applied Surface Science Advances, 19, 100558.
  • Dziuba, K., Todorow, M., Kowalik, A., Góra, R., Bojanowicz-Bablok, A., Kijenska, L. M., (2016), September). Carbon footprint in fertilizer production as a tool for reduction of GHG emissions. In Proceedings of the 22nd SETAC Europe LCA Case Study Symposium, Montpellier, France (pp. 20-22).
  • Fantke, P. (2019). Modelling the environmental impacts of pesticides in agriculture. In Assessing the environmental impact of agriculture (pp. 177-228). Burleigh Dodds Science Publishing.
  • Fantke, P., Jolliet, O. (2016). Life cycle human health impacts of 875 pesticides. The International Journal of Life Cycle Assessment, 21(5), 722-733.
  • Foteinis, S., Chatzisymeon, E., 2016. Life cycle assessment of organic versus conventional agriculture. A case study of lettuce cultivation in Greece. J. Clean. Prod. 112, 2462e2471. https://doi.org/10.1016/j.jclepro.2015.09.075.
  • Fusco, G., Campobasso, F., Laureti, L., Frittelli, M., Valente, D., Petrosillo, I. (2023). The environmental impact of agriculture: An instrument to support public policy. Ecological Indicators, 147, 109961.
  • Gaidajis, G., Kakanis, I. (2020). Life cycle assessment of nitrate and compound fertilizers productionA case study. Sustainability, 13(1), 148.
  • Garbounis, G., Karasali, H., Komilis, D. (2022). A life cycle analysis to optimally manage wasted plastic pesticide containers. Sustainability, 14(14), 8405.
  • Garnett, T., (2011). Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)? Food Pol. 36, 23e32. https://doi.org/10.1016/j.foodpol.2010.10.010.
  • Geisler, G., Hellweg, S., Liechti, S., Hungerbühler, K. (2004). Variability assessment of groundwater exposure to pesticides and its consideration in life-cycle assessment. Environmental science & technology, 38(16), 4457-4464.
  • Gentil, C., Basset-Mens, C., Manteaux, S., Mottes, C., Maillard, E., Biard, Y., Fantke, P. (2020). Coupling pesticide emission and toxicity characterization models for LCA: application to open-field tomato production in Martinique. Journal of Cleaner Production, 277, 124099.
  • Goedkoop, M., Heijungs, R., Huijbregts, M.A.J., (2009). ReCiPe 2008-A Life Cycle Impact Assessment Method Which Comprises Harmonised Category Indicators at the Midpoint and the Endpoint Level, first ed. (2009) Report I: Characterisation. http://www.lcia-recipe.net.
  • Hauschild, M. (2000). 22. Estimating pesticide emissions for LCA of agricultural products. Agricultural data for life cycle assessments, 70.
  • Huang, J., Xu, C. C., Ridoutt, B. G., Wang, X. C., Ren, P. A. (2017). Nitrogen and phosphorus losses and eutrophication potential associated with fertilizer application to cropland in China. Journal of Cleaner Production, 159, 171-179.
  • Joko, T., Setiani, O., Rahardjo, M., Arumdani, I. S. (2023). Life cycle analysis on pesticide exposure and residues in the environment of Brebes county shallot farms and farmers. Journal of Ecological Engineering, 24(3), https://doi.org/10.12911/22998993/157424.
  • Kafilzadeh, F., Ebrahimnezhad, M., Tahery, Y. (2015). Isolation and identification of endosulfan-degrading bacteria and evaluation of their bioremediation in Kor River, Iran. Osong Public Health Res. Perspect. 6, 39-46, https://doi.org/10.1016/j.phrp.2014.12.003.
  • Khan, B. A., Nadeem, M. A., Nawaz, H., Amin, M. M., Abbasi, G. H., Nadeem, M., Ayub, M. A. (2023). Pesticides: impacts on agriculture productivity, environment, and management strategies. In Emerging contaminants and plants: Interactions, adaptations and remediation technologies (pp. 109-134). Cham: Springer International Publishing.
  • Kowalczyk Z. Cupiał M. (2020). Environmental analysis of the conventional and organic production of carrot in Poland. Journal of Cleaner Production. Volume 269, 1 October 2020, 122169, https://doi.org/10.1016/j.jclepro.2020.122169.
  • Kowalczyk, Z., Kuboń, M. (2022). Assessing the impact of water use in conventional and organic carrot production in Poland. Scientific Reports 12, 3522. https://doi.org/10.1038/s41598-022-07531-7.
  • Kowalczyk, Z., Twardowski, S., Malinowski, M., Kuboń, M. (2023). Life cycle assessment (LCA) and energy assessment of the production and use of windows in residential buildings. Scientific Reports, 13(1), 19752.
  • Krein, D. D. C., Rosseto, M., Cemin, F., Massuda, L. A., Dettmer, A. (2023). Recent trends and technologies for reduced environmental impacts of fertilizers: A review. International Journal of Environmental Science and Technology, 20(11), 12903-12918.
  • Kross, A., Kaur, G., Jaeger, J. A. (2022). A geospatial framework for the assessment and monitoring of environmental impacts of agriculture. Environmental Impact Assessment Review, 97, 106851.
  • Kumar, P., Kumar, R., Thakur, K., Mahajan, D., Brar, B., Sharma, D., Sharma, A. K. (2023). Impact of pesticides application on aquatic ecosystem and biodiversity: a review. Biology Bulletin, 50(6), 1362-1375.
  • León O, Muñoz-Bonilla A, Soto D, Ramirez J, Marquez Y, Colina M, Fernández-García M (2017). Preparation of oxidized and grafted chitosan superabsorbents for urea delivery. J Polym Environ 26:728-739. https://doi.org/10.1007/s10924-017-0981-x.
  • Lovarelli, D. (2018). Application and enhancement of Life Cycle Assessment and Water Footprint approaches to agricultural machinery and cultivation.
  • Maksymiv, I., Pesticides: benefits and hazards, J. Vasyl Stefanyk (2015). Precarpath. Natl. Univ., vol. 2, no. 1, pp. 70-76.
  • Margni, M. D. P. O., Rossier, D., Crettaz, P., Jolliet, O. (2002). Life cycle impact assessment of pesticides on human health and ecosystems. Agriculture, ecosystems & environment, 93(1-3), 379-392.
  • Movilla-Pateiro, L.; Mahou-Lago, X.M.; Doval, M.I.; Simal-Gandara, J. (2021). Toward a sustainable metric and indicators for the goal of sustainability in agricultural and food production. Crit. Rev. Food Sci. Nutr. , 61, 1108-1129.
  • Nemecek, T., Antón, A., Basset-Mens, C., Gentil-Sergent, C., Renaud-Gentié, C., Melero, C., Fantke, P. (2022). Operationalising emission and toxicity modelling of pesticides in LCA: the OLCA-Pest project contribution. The International Journal of Life Cycle Assessment, 27(4), 527-542.
  • Niemiec, M., Komorowska, M., Atilgan, A. & Abduvasikov, A. (2024). Labelling the Carbon Footprint as a Strategic Element of Environmental Assessment of Agricultural Systems. Agricultural Engineering, 28(1), 2024. 235-250. https://doi.org/10.2478/agriceng-2024-0015.
  • Renaud-Gentié, C., Dijkman, T. J., Bjørn, A., Birkved, M. (2015). Pesticide emission modelling and freshwater ecotoxicity assessment for Grapevine LCA: adaptation of PestLCI 2.0 to viticulture. The International Journal of Life Cycle Assessment, 20(11), 1528-1543.
  • Rolewicz, A., Krajewska, M. & Starek-Wójcicka, A. (2025). Opportunities for the Use of Post-Production Raw Materials of the Fruit and Vegetable Industry in the Agri-Food Sector: A Review. Agricultural Engineering, 29(1), 2025. 135-155. https://doi.org/10.2478/agriceng-2025-0009.
  • Shen, J., Li, S., Liang, Z., Liu, L., Li, D., Wu, S. (2020). Exploring the heterogeneity and nonlinearity of trade-offs and synergies among ecosystem services bundles in the Beijing-Tianjin-Hebei urban agglomeration. Ecosystem Services, 43, 101103.
  • SimaPro database manual - methods library. Various authors, PRé Sustainability. (2020). PRé Sustainability B.V.
  • Skowroñska, M., Filipek, T. (2014). Life cycle assessment of fertilizers: a review. International Agrophysics, 28(1).
  • Sources of Greenhouse Gas Emissions. US EPA. Available online: https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions (accessed on 28 July 2021).
  • Tilman, D., Fargione, J., Wolff, B., D’Antonio, C., Dobson, A., Howarth, R., Swackhamer, D., (2001). Forecasting agriculturally driven global environmental change. Science 292 (5515), 281e284. https://science.sciencemag.org/content/292/5515/281.
  • Xu, X., Liu, J., Tan, Y., Yang, G. (2021). Quantifying and optimizing agroecosystem services in China's Taihu Lake Basin. Journal of Environmental Management, 277, 111440.
  • Xue, X., Hawkins, T. R., Ingwersen, W. W., Smith, R. L. (2015). Demonstrating an approach for including pesticide use in life-cycle assessment: Estimating human and ecosystem toxicity of pesticide use in Midwest corn farming. The International Journal of Life Cycle Assessment, 20(8), 1117-1126.
  • Yang, H., Pfster, S. Bhaduri, A. (2013). Accounting for a scarce resource: Virtual water and water footprint in the global water system. Curr. Opin. Environ. Sustain. 5(6), 599-606. https://doi.org/10.1016/j.cosust.2013.10.003 (2013).
  • Yin, X., Feng, L., Gong, Y. (2023). Mitigating ecotoxicity risks of pesticides on ornamental plants based on life cycle assessment. Toxics, 11(4), 360.
  • Żukiewicz, K., Słowik, T., Dudziak, A., Łusiak, P. & Mazur, J. (2024). Activities for Counteracting Wasting Food by Supermarket Chains in the Context of Sustainable Development. Agricultural Engineering, 28(1), 2024. 195-213. https://doi.org/10.2478/agriceng-2024-0013.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b4e8a525-a120-45b3-9b94-2ee4115d0479
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.