Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Introduction: Monte Carlo simulations are the gold standard for radiation dosimetry. However, developing accurate models for kilovoltage cone-beam computed tomography (kV-CBCT) systems can be challenging because accurate spectral and geometry specifications from vendors are not always available. This study presents equivalent spectral and filtration models that may be used for Monte Carlo modeling of the kV-CBCT beamline on-board the Halcyon 2.0 linear accelerator. Material and methods: Equivalent energy spectra for the 100, 125, and 140 kV beams were determined by matching beam half-value layers and air kerma outputs calculated using SPEKTR 3.0 software with measurements. The bowtie filter profile was reconstructed from transmission measurements, enabling the generation of a 3D filter model. The model was incorporated into Geant4/GATE Monte Carlo simulations for the purpose of computing depth and off-axis dose characteristics. Calculated percentage depth doses (PDDs) and off-axis profiles were benchmarked against those measured in a water phantom. Results: The maximum differences between measured and computed PDDs were 3.47% (100 kV), 3.65% (125 kV), and 3.27% (140 kV). For off-axis profiles, maximum differences were 3.73% (100 kV), 6.84% (125 kV), and 4.44% (140 kV) within the central beam. Larger discrepancies up to 22% occurred in high-gradient penumbral regions due to mismatches in spatial resolution between detectors and Monte Carlo scoring geometry. Conclusions: This study presents the first Monte Carlo model of the Halcyon 2.0 kV-CBCT system using measurement-derived equivalent models. The agreement between computed and experimental dose characteristics validates the accuracy of the model for imaging dose calculations until vendor supplied data is made accessible for geometry and spectral specifications.
Słowa kluczowe
Rocznik
Tom
Strony
110--117
Opis fizyczny
Bibliogr. 12 poz., rys.
Twórcy
autor
- Division of Medical Physics, Groote Schuur Hospital/University of Cape Town, Cape Town, South Africa
Bibliografia
- 1. Stanley DN, Harms J, Pogue JA, et al. A roadmap for implementation of kV‐CBCT online adaptive radiation therapy and initial first year experiences. J Applied Clin Med Phys. 2023;24(7). doi:10.1002/acm2.13961
- 2. Ding GX, Alaei P, Curran B, et al. Image guidance doses delivered during radiotherapy: Quantification, management, and reduction: Report of the AAPM Therapy Physics Committee Task Group 180. Medical Physics. 2018;45(5). doi:10.1002/mp.12824
- 3. Rogers DWO. Fifty years of Monte Carlo simulations for medical physics. Phys Med Biol. 2006;51(13):R287-R301. doi:10.1088/0031-9155/51/13/r17
- 4. Turner AC, Zhang D, Kim HJ, et al. A method to generate equivalent energy spectra and filtration models based on measurement for multidetector CT Monte Carlo dosimetry simulations. Medical Physics. 2009;36(6Part1):2154-2164. doi:10.1118/1.3117683
- 5. McMillan K, McNitt‐Gray M, Ruan D. Development and validation of a measurement‐based source model for kilovoltage cone‐beam CT Monte Carlo dosimetry simulations. Medical Physics. 2013;40(11). doi:10.1118/1.4823795
- 6. Li X, Shi JQ, Zhang D, et al. A new technique to characterize CT scanner bow‐tie filter attenuation and applications in human cadaver dosimetry simulations. Medical Physics. 2015;42(11):6274-6282. doi:10.1118/1.4932364
- 7. Altergot A, Schürmann M, Jungert T, et al. Imaging doses for different CBCT protocols on the Halcyon 3.0 linear accelerator – TLD measurements in an anthropomorphic phantom. Zeitschrift für Medizinische Physik. 2024;34(4):580-595. doi:10.1016/j.zemedi.2023.03.002
- 8. Gazdag-Hegyesi S, Gáldi Á, Major T, Pesznyák C. Dose indices of kilovoltage cone beam computed tomography for various image guided radiotherapy protocols. Radiation Protection Dosimetry. 2023;199(8-9):983-988. doi:10.1093/rpd/ncad101
- 9. Punnoose J, Xu J, Sisniega A, Zbijewski W, Siewerdsen JH. Technical Note: spektr 3.0-A computational tool for x-ray spectrum modeling and analysis. Med Phys. 2016;43(8Part1):4711-4717. doi:10.1118/1.4955438
- 10. Hernandez AM, Boone JM. Tungsten anode spectral model using interpolating cubic splines: Unfiltered x‐ray spectra from 20 kV to 640 kV. Medical Physics. 2014;41(4). doi:10.1118/1.4866216
- 11. Zhang G, Marshall N, Jacobs R, Liu Q, Bosmans H. Bowtie filtration for dedicated cone beam CT of the head and neck: a simulation study. BJR. 2013;86(1028):20130002. doi:10.1259/bjr.20130002
- 12. Mayer JR, 20 January 2024. [Online]. Available: https://www.freecadweb.org.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b4e67ddd-09b3-4857-88ba-db7dfd10110f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.