PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design and Implement an Automatic Smart Buoy System for a Bulgarian Safe Beach Areas – Part 2

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Internet of Things (IoT) is undergoing rapid expansion, transforming industries and everyday life through interconnected devices and data-driven decision-making. As IoT adoption accelerates, ensuring its accessibility and usability for non-technical users becomes increasingly critical. Simplified interaction with IoT systems facilitates broader adoption and maximizes their potential to improve safety, efficiency, and convenience. This aspect is particularly crucial in the domain of coastal safety, where IoT technologies can play a pivotal role. By integrating IoT into a smart buoy system, real-time data on water conditions, weather patterns, and swimmer safety can be continuously monitored and seamlessly communicated to lifeguards and beach visitors. The effectiveness of such a system relies on an intuitive and user-friendly design, enabling individuals without technical expertise to engage with its functionalities effortlessly. IoT serves as the foundation of this innovation, providing seamless connectivity, data sharing, and automation. Prioritizing IoT integration in critical safety solutions such as smart buoys underscores its potential to enhance life-saving measures while contributing to the development of more intelligent, secure, and interconnected environment.
Twórcy
  • Nikola Vaptsarov Naval Academy, Varna, Bulgaria
autor
  • Nikola Vaptsarov Naval Academy, Varna, Bulgaria
  • Nikola Vaptsarov Naval Academy, Varna, Bulgaria
  • Technical University of Munich, Munich, Germany
Bibliografia
  • [1] Dimitrov, I. et al.: Design and Implement an Automatic Smart Buoy System for a Bulgarian Safe Beach Areas – part 1. TransNav (2025) (in review);
  • [2] Govaers, F.: Introduction and Implementations of the Kalman Filter. Chapter from book: Intoduction to Kalman Filter and Its Applications. IntechOpen (2018). https://doi.org/10.5772/intechopen.80600;
  • [3] Hosny, K., et al.: Internet of things applications using Raspberry-Pi: a survey. IJECE (2023), Vol. 13, № 1, pp. 902-910. https://doi.org/10.11591/ijece.v13i1.pp902-910;
  • [4] Iliev, I.: Smart Buoy Testing, Mendeley Data, V1 (2025), https://doi.org/10.17632/w32v8dr63t.1;
  • [5] Noguiera, S.: Design and Development of a Cost-Effective Buoy Using 3d Printing for Coastal Monitoring. SSRN (2025). https://doi.org/10.2139/ssrn.5082933; (preprint);
  • [6] Oppenheim, A. and Willsky, A.: Signals and Systems, 2nd ed. (2010). Pearson.
  • [7] Paul, B.: An Overview of LoRaWAN. WSEAS Transactions on Communications (2021), pp. 231-239. https://doi.org/10.37394/23204.2020.19.27;
  • [8] Raanes, P.: On the ensemble Rauch-Tung-Striebel smoother and its equivalence to the ensemble Kalman smoother. Quarterly Journal of the Royal Meteorological Society (2015). https://doi.org/10.1002/qj.2728;
  • [9] Swartzmiller, S.: Development of a Fused Deposition 3D Printed Buoy and Method for Quantifying Wave Tank Reflections. PhD thesis, Michigan Technological University, 2019.
  • [10] Wagner, N, et al.: Mechanical Testing of 3D Printed Materials. In book: TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings. https://doi.org/10.1007/978-3-030-36296-6_14.
Uwagi
Pełne imiona podano na stronie internetowej czasopisma w "Authors in other databases."
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b4e475d6-6626-407c-ac4f-69aee0882363
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.