PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of thin, achromatic diffractive structures to focus terahertz radiation on a detector

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thin and lightweight achromatic focusing elements with F-number close to 1 are desirable in many practical applications. We present the idea to use diffractive structures designed to work for the substantially increased THz frequency range. The paper analyses mono- and multi-focal lenses forming point-like foci as well as axicon and light sword optical elements focusing THz radiation into line segments located along the optical axis. We consider diffractive elements in a form of the first and the second order kinoforms having various thicknesses. Designed and fabricated elements were numerically and experimentally examined to verify their achromatic functioning. We present point spread functions (XY scans) and 2D energy maps (XZ scans) for different THz frequencies. Moreover, a diagram of chromatic aberration is created by registering energy distribution along the optical axis for different frequencies. The distance corresponding to the highest energy is chosen for each frequency. Therefore, we can compare broadband working of designed structures. The spherical lens coded as kinoform of the second order provides the best broadband functioning, however it is two times thicker than structures providing extended depth of focus (light sword and axicon) working with slightly smaller efficiency but being much thinner.
Czasopismo
Rocznik
Strony
463--476
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Warsaw University of Technology, Faculty of Physics, 75 Koszykowa, Warsaw, Poland
  • Warsaw University of Technology, Faculty of Physics, 75 Koszykowa, Warsaw, Poland
  • Warsaw University of Technology, Faculty of Physics, 75 Koszykowa, Warsaw, Poland
autor
  • Warsaw University of Technology, Faculty of Physics, 75 Koszykowa, Warsaw, Poland
  • Warsaw University of Technology, Faculty of Physics, 75 Koszykowa, Warsaw, Poland
  • Military University of Technology, Institute of Optoelectronics, 2 Urbanowicz, Warsaw, Poland
  • Warsaw University of Technology, Faculty of Physics, 75 Koszykowa, Warsaw, Poland
Bibliografia
  • [1] JANSEN C., WIETZKE S., PETERS O., SCHELLER M., VIEWEG N., SALHI M., KRUMBHOLZ N., JORDENS C., HOCHREIN T., KOCH M., Terahertz imaging: applications and perspectives, Applied Optics 49(19), 2010, pp. E48–E57, DOI:10.1364/AO.49.000E48.
  • [2] JEPSEN P.U., COOKE D.G., KOCH M., Terahertz spectroscopy and imaging – modern techniques and applications, Laser & Photonics Reviews 5(1), 2011, pp. 124–166, DOI:10.1002/lpor.201000011.
  • [3] ZHANG X., ZHANG Z., Application of terahertz technology in biomolecular analysis and medical diagnosis, [In] Terahertz Spectroscopy – A Cutting Edge Technology, J. Uddin [Ed.], IntechOpen, 2017, pp. 173–190.
  • [4] SUNG S., TAYLOR Z., Quasioptical imaging system design for THz medical imaging application (Conference Presentation), Proceedings of SPIE 9706, 2016, article 970605, DOI:10.1117/12.2218578.
  • [5] SHI L., SHUMYATSKY P., RODRIGUEZ-CONTRERAS A., ALFANO R., Terahertz spectroscopy of brain tissue from a mouse model of Alzheimer’s disease, Journal of Biomedical Optics 21(1), 2016, article 015014, DOI:10.1117/1.JBO.21.1.015014.
  • [6] HUMPHREYS K., LOUGHRAN J.P., GRADZIEL M., LANIGAN W., WARD T., MURPHY J.A., O’SULLIVAN C., Medical applications of terahertz imaging: a review of current technology and potential applications in biomedical engineering, [In] The 26th Annual International Conference of the IEEE Engineeringin Medicine and Biology Society, IEEE, 2004, pp. 1302–1305, DOI:10.1109/IEMBS.2004.1403410.
  • [7] A low cost and fully passive Terahertz inspection system based on nano-technology for security application, PROJECT NUMBER: FP6-NMP-26786; https://cordis.europa.eu/project/rcn/81555/factsheet/en (accessed July 23, 2019).
  • [8] KRIMI S., KLIER J., JONUSCHEIT J., VON FREYMANN G., URBANSKY R., BEIGANG R., Highly accurate thickness measurement of multi-layered automotive paints using terahertz technology, Applied Physics Letters 109(2), 2016, article 021105, DOI:10.1063/1.4955407.
  • [9] SHUMYATSKY P., ALFANO R., Terahertz sources, Journal of Biomedical Optics 16(3), 2011, article 033001, DOI:10.1117/1.3554742.
  • [10] SCHERGER B., SCHELLER M., JANSEN C., KOCH M., WIESAUER K., Terahertz lenses made by compression molding of micropowders, Applied Optics 50(15), 2011, pp. 2256–2262, DOI:10.1364/AO.50.002256.
  • [11] BRUCKNER C., NOTNI G., TUNNERMANN A., Optimal arrangement of 90° off-axis parabolic mirrors in THz setups, Optik 121(1), 2010, pp. 113–119, DOI:10.1016/j.ijleo.2008.05.024.
  • [12] SIEMION A., Terahertz diffractive optics – smart control over radiation, Journal of Infrared, Millimeter, and Terahertz Waves 40(5), 2019, pp. 477–499, DOI:10.1007/s10762-019-00581-5.
  • [13] MARRON J.C., ANGELL D.K., TAI A.M., Higher-order kinoforms, Proceedings of SPIE 1211, 1990, pp. 62–67, DOI:10.1117/12.17930.
  • [14] LIEBERT K., RACHON M., BOMBA J., SOBCZYK A., ZAGRAJEK P., SYPEK M., SUSZEK J., SIEMION A., THz diffractive focusing structures for broadband application, Photonics Letters of Poland 10(3), 2018, pp. 76–78, DOI:10.4302/plp.v10i3.845.
  • [15] ROSTAMI A., RASOOLI H., BAGHBAN H., Terahertz Technology: Fundamentals and Applications, Springer Science and Business Media, Springer-Verlag Berlin Heidelberg, 2011.
  • [16] SUSZEK J., SIEMION A. M., BŁOCKI N., MAKOWSKI M., CZERWIŃSKI A., BOMBA J., KOWALCZYK A., DUCIN I., KAKARENKO K., PAŁKA N., ZAGRAJEK P., KOWALSKI M., CZERWIŃSKA E., JASTRZEBSKI C., ŚWITKOWSKI K., COUTAZ J.-L., KOLODZIEJCZYK A., SYPEK M., High order kinoforms as a broadband achromatic diffractive optics for terahertz beams, Optics Express 22(3), 2014, pp. 3137–3144, DOI:10.1364/OE.22.003137.
  • [17] SOIFER V.A., DOSKOLOVICH L.L., KAZANSKIY N.L., Multifocal diffractive elements, Optical Engineering 33(11), 1994, pp. 3610–3616, DOI:10.1117/12.179890.
  • [18] KOLODZIEJCZYK A., BARA S., JAROSZEWICZ Z., SYPEK M., The light sword optical element—a new diffraction structure with extended depth of focus, Journal of Modern Optics 37(8), 1990, pp. 1283–1286, DOI:10.1080/09500349014551431.
  • [19] SOCHACKI J., KOLODZIEJCZYK A., JAROSZEWICZ Z., BARA S., Nonparaxial design of generalized axicons, Applied Optics 31(25), 1992, pp. 5326–5330, DOI:10.1364/AO.31.005326.
  • [20] BURALLI D.A., MORRIS G.M., ROGERS J.R., Optical performance of holographic kinoforms, Applied Optics 28(5), 1989, pp. 976–983, DOI:10.1364/AO.28.000976.
  • [21] MIKULA G., KOLODZIEJCZYK A., MAKOWSKI M., PROKOPOWICZ C., SYPEK M., Diffractive elements for imaging with extended depth of focus, Optical Engineering 44(5), 2005, article 058001, DOI:10.1117/1.1905481.
  • [22] SYPEK M., Light propagation in the Fresnel region. New numerical approach, Optics Communications 116(1–3), 1995, pp. 43–48, DOI:10.1016/0030-4018(95)00027-6.
  • [23] JAROSZEWICZ Z., KOLODZIEJCZYK A., SYPEK M., GOMEZ-REINO C., Non-paraxial analytical solution for the generation of focal curves, Journal of Modern Optics 43(3), 1996, pp. 617–637, DOI:10.1080/09500349608232770.
  • [24] KRUTH J.P., WANG X., LAOUI T., FROYEN L., Lasers and materials in selective laser sintering, Assembly Automation 23(4), 2003, pp. 357–371, DOI:10.1108/01445150310698652.
  • [25] SCHERGER B., WIETZKE S., SCHELLER M., VIEWEG N., WICHMANN M., KOCH M., WIESAUER K., Characterization of micro-powders for the fabrication of compression molded THz lenses, Journal of Infrared, Millimeter, and Terahertz Waves 32(7), 2011, pp. 943–951, DOI:10.1007/s10762-011-9806-5.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b4e45dd5-36b3-47a6-9df0-277b1ed4f9e5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.