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Measurement Uncertainty In Algorithms Using PCA Method  
 

Abstract 

 
Propagation analysis of selected uncertainty sources in algorithms using 

the PCA method has been presented. The paper shows uncertainty analysis 

in algorithms, which use minimization of squared distances technique and 
maximizing the variance technique. On the basis of simulation tests the 

influence of the used signal sampling technique on the eigenvalues vector 

for the sinusoidal signal containing additive white noise, has been 
compared. Three applied sampling techniques have been analyzed: 

synchronization of the beginning of the data acquisition, for the successive 

sequences xi, immediately after a positive zero-level crossing of the 
analyzed waveform; separation of the NM-element sequence x to M of  

N-element sequences xi collected sequentially in subsequent rows of the 

matrix X; and application of sampling with the fractional delay of d=Ts/2, 
and X matrix construction from alternating strings: x2i-1 - sampled with  

a delay of d, and x2i - sampled with a zero delay from the moment of the 

zero crossing by analyzed waveform. 
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1. Introduction 
 

In the measurements using the algorithms of processing the 

sequences of the sampled signal values, which are obtained in the 

multi-channel data acquisition systems, in some cases, the method 

of principal component analysis (PCA) is used. The application of 

this method enables to decrease the influence of interference 

affecting the analyzed measurement signal. In [1] the PCA method 

has been used in the process of elimination of artifacts from the 

electroencephalographic signal. In the high accuracy measure-

ments, in which data acquisition system function is performed by 

voltmeter with an integrating analog-to-digital converter, it can be 

used to decrease the influence of generator and voltmeter noises. 

PCA method, combined with fractional delay sampling technique 

was used in [2] for the estimation of the complex ratio of 

sinusoidal voltage amplitudes. In [3] a similar method was used to 

determine the harmonic components of periodic signals. The 

second group of application of the PCA method is reduction of 

results matrix dimensionality through rotation of coordinate 

system in order to eliminate correlation between the measurand 

components. Hence, in the algorithm for the estimation of 

impedance components by ellipse fitting method [4], the PCA was 

used in order to reduce the measurement uncertainty. 

Principal Component Analysis enables to reduce the dimensions 

by linear transformation of a set of correlated variables into 

smaller in number collection of uncorrelated variables - the main 

components. The problem of dimension reduction can be solved 

using two methods: 

 by finding a linear subspace of P < N dimension, for which the 

sum of squared distances of the original points to the points 

after projection will be the smallest, 

 by finding a linear subspace of P <N dimension, which 

ensures the maximal variances of the primary data projected 

on the subspace. 

Regardless of the method of dimension reduction, the solution is 

obtained by determining the eigenvectors and eigenvalues of the 

empirical covariance matrix or correlation matrix. 

For the first method, a sought solution is PM of eigenvectors 

with the smallest eigenvalues, for the second - a P-dimensional 

subspace defined by P eigenvectors v1, ..., vP of empirical 

covariance matrix C, corresponding to the P largest eigenvalues 

1, ..., P. 

The empirical covariance matrix C for NM dimensional data 

matrix X is defined as: 
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In (1) the most frequent way of writing the successive 

measurement results in the matrix X rows has been applied. 

For each real, symmetric matrix C, an orthogonal matrix V of 

eigenvectors exists, for which: 
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where: N ,,, 21  are ordered ascending, the real eigenvalues 

of the matrix C, and NIVVVV
TT  . 

In some algorithms, instead of the covariance matrix the 

correlation matrix RX is used: 
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Matrix (3) is a circulant matrix, which can be obtained  

by permutations of elements from its first row 

r1=[Rx(0) Rx(1) ... Rx(N1)], hence: 
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where NN dimensional permutation matrix 
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On the other hand, one can perform decomposition of the matrix 

(3) to components, corresponding a correlation matrix of each 

column of NM dimensional data matrix X: 
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As discrete Fourier transform (DFT) of X matrix is equal to 

 

   XFXX N NDFT , (6) 

 

where: FN∊ℂ
NN is a complex Fourier matrix, for which 

NNN FF
H

, and the superscript "H" denotes a Hermitian matrix 

(transpose conjugate). 

The power spectral density function can be determined from the 

formula 
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Due to the similarity of matrices C and XXH, the comparison of 

(2) and (7) shows, that the eigenvalues calculated from the 

formula (2) are proportional to the value of the discrete power 

spectral density functions (7). 

The paper presents the analysis examples of influence of 

selected uncertainty sources on the measurand value determined in 

the algorithms using the method of the principal components 

analysis. 

 

2. Minimization of squared distances 
 

The PCA method has been used in the extended algorithm of 

ellipse fitting in order to decrease the measurement uncertainty 

[4]. The reduction of data dimension from the 3D space to 2D 

plane in this case consists in finding linear subspace with the 

smallest sum of squared distances of the points after projection to 

the original points. In the 3-channel data acquisition circuit a three 

sequences of samples are collected. The first are samples of 

voltage on the measured impedance x1(n). Secondly, the samples 

of voltage x2(n) proportional to the current, on the standard serial 

resistor. Finally, closing circuit, the voltage samples of the 

sinusoidal generator x3(n), which forces the flow of current in the 

circuit. For this kind of circuit the voltage equation can be defined 

as: 

 2xxx  13 . (8) 

 

On account of interference and noise as well as uncertainties 

connected with the instrumental errors of analog-to-digital 

processing system, equation (8) is satisfied only approximately. 

The original set of measurement data obtained in 3-channel data 

acquisition system has been collected in N3 dimensional matrix 

X=[x1 x2 x3]. As on the basis of Kirchhoff's voltage law it is 

known, that the set of points contained in this matrix should be on 

a plane, the PCA method was used. The measurement results in 

subsequent columns of the matrix X are characterized by mean 

values 321, xxx  ,  and uncertainties, related with each of the three 

channels (dimensions). In the analyzed algorithm one used 

different than in (1) way of data matrix arrangement – successive 

measurement results for the particular channels have been 

collected in the columns of matrix X. Therefore, the covariance 

matrix C3D is described as: 

 

   )()(
111

X1XX1XC
T

NNNN
NNN

3D ℝ33. (9) 

 

Matrix (9) can be written as: 
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Hence, after taking (2) into account, a plane, which is searched, 

is described by eigenvectors v1, v2, and searched points are 

projections of points from the plane v1, v2 onto a plane defined by 

the base vectors of the Cartesian system [e1 e2]: 
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It results from (11) that X2D=F(X, V), wherein, on the basis of 

(2), V=G(X). Estimation of the covariance matrix under the law of 

uncertainty propagation requires the designation of the 

corresponding derivatives of the matrix functions F and G [5]. It 

can be shown, that the transformation carried out did not change 

the mean values of primary data and the covariance data matrix on 

the plane C2D is equal to 
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It results from the presented in [4] simulation tests that the 

obtained on the basis of (11) corrected values of signals connected 

with the tested impedance enable a double decrease uncertainty of 

estimates the module as well as impedance phase angle, 

determined by the ellipse fitting method. 

 

3. Maximizing the variance 
 

Diagonalization of the correlation matrix can be used for 

estimating the power spectral density of periodic signals. An 

important source of uncertainty are in this case the noise of 

generator and incoherent sampling. If the tested periodic signal 

x(t) is accompanied by an additive, uncorrelated with the signal, 

white noise s(t) with zero expected value and variance s, then, for 

N-element set of samples y(n), collected synchronously in the 

period T 

 1,,1,0),()()(  Nnnsnxny          , (13) 

 

correlation matrix Ry in the form of (3) is obtained. It can be 

decomposed into two components: 
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After applying this matrix decomposition in terms of its 

eigenvalues, in accordance with (2) 
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If data are collected synchronously in successive M periods of 

the analyzed periodic signal form matrix X, then the correlation 

matrix described by the equation (5) takes the form 
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Because at the same time 
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then in the case of (16) )( 2
NsM IΛΛ xX  . 

If data forming the matrix X are sampled asynchronously, the 

correlation function values Rxi, corresponding to successive 

columns xi of the matrix X differ - then the general equation (17) 

should be applied. 

Independently of the noise propagation, the phenomenon of 

spectral leakage is important for an asynchronous sampling. Then, 

depending on the selected sampling strategy, different averaging 

level of power density function value determined for subsequent 

correlation matrix Rxi is obtained. Three basic techniques for 

samples acquisition are applied: 

 

I. synchronization of the beginning of the data acquisition, for 

the successive sequences xi, immediately after a positive zero-

level crossing of the analyzed waveform x(t), 
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II. separation of the NM-element sequence x to M of N-element 

sequences xi collected in subsequent row of the matrix 

XℝNM, 

 

III. application of sampling with the fractional delay of d=Ts/2, 

and X matrix construction from alternating strings: x2i-1 - 

sampled with a delay of d, and x2i - sampled with a zero delay 

from the moment of the zero crossing by analyzed waveform. 

 

In order to compare the influence of the acquisition technique  

on the correlation matrix RX form and its eigenvalues X,  

a simulation experiment has been carried out. It was assumed that 

a sinusoidal signal with 1V amplitude and f frequency is analyzed. 

The signal is accompanied by the additive white noise with 0.05 V 

RMS value. For the calculation, data sequence with NM=1024 

length sampled by a 16-bit A/D converter was assumed. The 

matrix X was constructed as a result of division of this sequence 

into M=64 sequences xi. For synchronous sampling, sampling 

frequency was fs=Mf. The influence of asynchronous sampling 

was tested assuming that the signal period increased by 5%. In 

Fig. 1 and 2 correlation matrix maps for the analyzed sampling 

techniques was presented. 

 

 

 
 

 

 
 

Fig. 1.  Correlation matrix map: a) synchronous sampling, b) asynchronous sampling 

with the synchronization of the beginning of the data acquisition, for the 

successive sequences xi, immediately after a positive zero-level crossing  

of the analyzed waveform (I) 

 

For comparison, the matrix map for the synchronous sampling 

was shown (Fig. 1a). For the simulated measurement conditions, 

the correlation matrix maps using synchronization technique of the 

beginning of sampling immediately after a positive zero-level 

crossing (Fig. 1b) and sampling with the fractional delay (Fig. 2b) 

are practically the same – the differences in values of these 

matrices elements do not exceed 610-3 V2. 

 

 

 
 

 

 
 

Fig. 2.  Correlation matrix map: a) asynchronous sampling with the separation of the 

NM -element sequences xi collected sequentially in the matrix rows (II),  

b) application of sampling with the fractional delay d=Ts/2 (III) 

 

Table 1 presents values of nonzero eigenvector elements 

corresponding to the analyzed sampling techniques.  
 
Tab. 1. The values of nonzero eigenvalues elements of the covariance matrix for the 

analyzed sampling techniques 
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For the synchronous sampling, eigenvector contains one 

nonzero element equal to 64=1.0000 – for the signal without 

noise. After adding the additive white noise along with the value 

64=1.0072 eigenvalues from the range 49,...,63=1.0510-4,..., 

5.6410-4 appear.  
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Additionally, the table presents values of eigenvector elements 

for the desynchronization factor 0.01 and 0.1 defined as the 

fractional part of fs/f ratio. Due to asynchronous sampling, in the 

correlation matrix spectrum additional nonzero elements appear.  

A relative estimation error of signal power can be estimated by 

calculating the ratio of the sum of K nonzero eigenvector elements 

resulting from the noise and the asynchronous sampling to the sum 

of eigenvalues resulting from the properties of the analyzed signal: 
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4. Conclusion 
 

The paper presents the analysis examples of the influence of the 

chosen uncertainty sources on the measurand determined in the 

algorithms using covariance matrix or data correlation matrix 

diagonalization. In the case of data dimensionality reduction,  

a reduction of measurement uncertainty value is obtained as  

a result of the removal of the covariance between the measured 

values (12). The use of the matrix of eigenvalues to estimate 

spectral components of the analyzed periodic signal enables 

averaging of the uncertainty associated with additive, uncorrelated 

noise, and reducing the impact of asynchronous sampling by 

applying appropriate sampling techniques. On the basis on the 

simulation tests it can be assumed that in conditions of 

synchronous sampling the largest eigenvalue of the correlation 

matrix is equal to the power of the analyzed sinusoidal signal. The 

results of these tests confirmed the ability to average the additive 

noise accompanied by the analyzed signal. Among the analyzed 

sampling techniques, for the analyzed values of the 

desynchronization factor, techniques I and III are resistant to lack 

of the synchronous sampling. The sampling technique II is 

characterized by different covariance matrix structure (Fig. 2a). Its 

result is the appearance of two eigenvalues – their sum 

corresponds to the power of the analyzed signal. A way of the 

division of data vector in the covariance matrix rows has  

a significant influence on the covariance matrix structure. The 

analysis of the influence of the covariance matrix structure on its 

eigenvalues should indicate the best sampling technique for the 

specific type of signal. 
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