PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction of Buckling Behaviour of Composite Plate Element Using Artificial Neural Networks

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents the use of Artificial Neural Networks (ANNs) to analysis of the composite plate elements with cut-outs which can work as a spring element. The analysis were based on results from numerical approach. ANNs models have been developed utilizing the obtained numerical data to predict the composite plate’s flexural-torsional form of buckling as natural form for different cut-outs and angels configurations. The ANNs models were trained and tested using a large dataset, and their accuracy is evaluated using various statistical measures. The developed ANNs models demonstrated high accuracy in predicting the critical force and buckling form of thin-walled plates with different cut-out and fiber angels configurations under compression. The combination of numerical analyses with ANNs models provides a practical and efficient solution for evaluating the stability behaviour of composite plates with cut-outs, which can be useful for design optimization and structural monitoring in engineering applications.
Twórcy
  • Faculty of Mechanical Engineering, Department of Machine Design and Mechatronics, Lublin University of Technology
  • Faculty of Management, Department of Organisation of Enterprise, Lublin University of Technology
Bibliografia
  • 1. Rogala M., Gajewski J., Górecki M. Study on the Effect of Geometrical Parameters of a Hexagonal Trigger on Energy Absorber Performance Using ANN. Materials.2021;14(20):5981.
  • 2. Kosicka E., Krzyzak A., Dorobek M., Borowiec M. Prediction of Selected Mechanical Properties of Polymer Composites with Alumina Modifiers. Materials. 2022;15(3):882.
  • 3. Szala M., Łatka L., Awtoniuk M., Winnicki M., Michalak M. Neural Modelling of APS Thermal Spray Process Parameters for Optimizing the Hardness, Porosity and Cavitation Erosion Resistance of Al2O3-13 wt% TiO2 Coatings. Processes. 2020;8(12):1544.
  • 4. Singh J., Vasudev H., Szala M., Gill H.S. Neural computing for erosion assessment in Al-20TiO2 HVOF thermal spray coating. Int J Interact Des Manuf. 2023; https://link.springer.com/10.1007/s12008-023-01372-y.
  • 5. Karpiński R., Krakowski P., Jonak J., Machrowska A., Maciejewski M., Nogalski A. Diagnostics of Articular Cartilage Damage Based on Generated Acoustic Signals Using ANN—Part I: Femoral-Tibial Joint. Sensors. 2022;22(6):2176.
  • 6. Machrowska A., Szabelski J., Karpiński R., Krakowski P., Jonak J., Jonak K. Use of Deep Learning Networks and Statistical Modeling to Predict Changes in Mechanical Parameters of Contaminated Bone Cements. Materials. 2020;13(23):5419.
  • 7. Zhang Z., Friedrich K. Artificial neural networks applied to polymer composites: a review. Composites Science and Technology. 2003;63(14):2029–44.
  • 8. Lucon P.A., Donovan R.P. An artificial neural network approach to multiphase continua constitutive modeling. Composites Part B: Engineering. 2007;38(7–8):817–23.
  • 9. Just-Agosto F.., Serrano D, Shafiq B., Cecchini A. Neural network based nondestructive evaluation of sandwich composites. Composites Part B: Engineering. 2008;39(1):217–25.
  • 10. Boğa A.R., Öztürk M., Topçu İ.B. Using ANN and ANFIS to predict the mechanical and chloride permeability properties of concrete containing GG-BFS and CNI. Composites Part B: Engineering. 2013;45(1):688–96.
  • 11. Naderpour H., Kheyroddin A.., Amiri GG. Prediction of FRP-confined compressive strength of concrete using artificial neural networks. Composite Structures. 2010;92(12):2817–29.
  • 12. Kulisz M., Kujawska J.., Aubakirova Z, Zhairbaeva G., Warowny T. Prediction of The Compressive Strength Of Environmentally Friendly Concrete Using Artificial Neural Network. acs. 2022;18(4):68–81.
  • 13. Malik M.H., Arif A.F.M. ANN prediction model for composite plates against low velocity impact loads using finite element analysis. Composite Structures. 2013;101:290–300.
  • 14. Prusty J.K., Papazafeiropoulos G., Mohanty S.C. Free vibration analysis of sandwich plates with cutouts: An experimental and numerical study with artificial neural network modelling. Composite Structures. 2023;321:117328.
  • 15. Falkowicz K., Debski H. The work of a compressed, composite plate in asymmetrical arrangement of layers. W Depok, Indonesia; 2019; s. 020005. http://aip.scitation.org/doi/abs/10.1063/1.5092008
  • 16. Falkowicz K., Debski H., Wysmulski P. Effect of extension-twisting and extension-bending coupling on a compressed plate with a cut-out. Composite Structures. 2020;238:111941.
  • 17. Falkowicz K. Composite plate analysis made in an unsymmetric configuartion. J Phys: Conf Ser. 2021;2130(1):012014.
  • 18. Wysmulski P., Debski H., Falkowicz K. Sensitivity of Compressed Composite Channel Columns to Eccentric Loading. Materials. 2022;15(19):6938.
  • 19. Falkowicz K. Numerical Buckling Analysis of Thin-Walled Channel-Section Composite Profiles Weakened by Cut-Outs. Adv Sci Technol Res J. 2022;16(6):88–96.
  • 20. Wysmulski P. The effect of load eccentricity on the compressed CFRP Z-shaped columns in the weak post-critical state. Composite Structures. 2022;301:116184.
  • 21. Banat D., Mania R. Failure analysis of thin-walled GLARE members during buckling and post-buckling response. In Zakopane, Poland; 2019; s. 020001. https://pubs.aip.org/aip/acp/article/736694.
  • 22. Bazant Z.P., Cedolin L., Hutchinson J.W. Stability of Structures: Elastic, Inelastic, Fracture, and Damage Theories. Journal of Applied Mechanics. 1993;60(2):567–8.
  • 23. Wysmulski P. The analysis of buckling and post buckling in the compressed composite columns. Archives of Materials Science and Engineering. 2017;85(1):35–41.
  • 24. Różyło P., Dębski H., Kral J. Buckling and limit states of composite profiles with top-hat channel section subjected to axial compression. AIP Conf. Proc. 2018, 1922, 080001. https://pubs.aip.org/aip/acp/article/608612.
  • 25. Debski H., Samborski S, Rozylo P, Wysmulski P. Stability and Load-Carrying Capacity of Thin-Walled FRP Composite Z-Profiles under Eccentric Compression. Materials. 2020;13(13):2956.
  • 26. Debski H., Rozylo P., Wysmulski P. Stability and load-carrying capacity of short open-section composite columns under eccentric compression loading. Composite Structures. 2020;252:112716.
  • 27. Falkowicz K. Experimental and numerical failure analysis of thin-walled composite plates using progressive failure analysis. Composite Structures. 2023;305:116474.
  • 28. Rozylo P., Falkowicz K. Stability and failure analysis of compressed thin-walled composite structures with central cut-out, using three advanced independent damage models. Composite Structures. 2021;273:114298.
  • 29. Banat D., Mania R.J., Degenhardt R. Stress state failure analysis of thin-walled GLARE composite members subjected to axial loading in the post-buckling range. Composite Structures. 2022;289:115468.
  • 30. Chróścielewski J., Miśkiewicz M., Pyrzowski Ł., Rucka M., Sobczyk B., Wilde K. Modal properties identification of a novel sandwich footbridge – Comparison of measured dynamic response and FEA. Composites Part B: Engineering. 2018;151:245–55.
  • 31. Bakunowicz J., Kopecki T., Lis T., Mazurek P. Effect of stiffeners on nature of post-critical deformations of thin-walled composite aircraft structures: A combined numerical-experimental study. W: 2016 7th International Conference on Mechanical and Aerospace Engineering (ICMAE) [Internet]. London, United Kingdom: IEEE; 2016; s. 46–53. http://ieeexplore.ieee.org/document/7549506/.
  • 32. Singer J., Arbocz J., Weller T. Buckling experiments: experimental methods in buckling of thinwalled structures. Chichester; New York: Wiley; 1998. 2 s.
  • 33. Koiter W.T., Heijden A.M.A. van der. W.T. Koiter’s elastic stability of solids and structures. Cambridge ; New York: Cambridge University Press; 2009. 230 s.
  • 34. Falkowicz K., Samborski S., Valvo P.S. Effects of Elastic Couplings in a Compressed Plate Element with Cut-Out. Materials. 2022;15(21):7752.
  • 35. Falkowicz K. Validation of Extension-Bending and Extension-Twisting Coupled Laminates in Elastic Element. Adv Sci Technol Res J. 2023;17(3):309–19.
  • 36. Falkowicz K. Buckling numerical analysis of composite plate element in asymmetrical configuration. J Phys: Conf Ser. 2021;1736(1):012029.
  • 37. Falkowicz K., Debski H., Teter A. Design solutions for improving the lowest buckling loads of a thin laminate plate with notch. In Lublin, Poland; 2018; s. 080004. http://aip.scitation.org/doi/abs/10.1063/1.5019075.
  • 38. Falkowicz K., Wysmulski P., Debski H. Buckling Analysis of Laminated Plates with Asymmetric Layup by Approximation Method. Materials. 2023;16(14):4948.
  • 39. Wysmulski P., Falkowicz K., Filipek P. Buckling state analysis of compressed composite plates with cut-out. Composite Structures. 2021;274:114345.
  • 40. Jonak J., Karpiński R., Wójcik A. Numerical analysis of the effect of embedment depth on the geometry of the cone failure. J Phys: Conf Ser. 2021;2130(1):012012.
  • 41. Kopecki T., Święch Ł. Experimental-Numerical Analysis of a Flat Plate Subjected to Shearing and Manufactured by Incremental Techniques. Adv Sci Technol Res J. 2023;17(4):179–88.
  • 42. Rzeczkowski J., Paśnik J., Samborski S. Corrigendum to “Mode III numerical analysis of composite laminates with elastic couplings in split cantilever beam configuration”. Composite Structures. 2021;266:113920.
  • 43. Couto R., Couto A., Arachchige D., Nascimento D., Moreira R., De Moura M., i in. Numerical analysis on the strength prediction of composite bonded repairs under different loading scenarios. Journal of Composite Materials. 2023;57(19):3025–43.
  • 44. Falkowicz K., Szklarek K. Analytical method for projecting the buckling form of composite palates with a cut-out. IOP Conf Ser: Mater Sci Eng. 2019;710(1):012021.
  • 45. Falkowicz K., Debski H. The post-critical behaviour of compressed plate with non-standard play orientation. Composite Structures. 2020;252:112701.
  • 46. Kujawska J., Kulisz M., Oleszczuk P, Cel W. Machine Learning Methods to Forecast the Concentration of PM10 in Lublin, Poland. Energies. 2022;15(17):6428.
  • 47. Kłosowski G., Kulisz M. Identification of surface defects using deep and transfer learning. J Phys: Conf Ser. 2022;2408(1):012028.
  • 48. Karpiński R., Krakowski P., Jonak J., Machrowska A., Maciejewski M., Nogalski A. Diagnostics of Articular Cartilage Damage Based on Generated Acoustic Signals Using ANN—Part II: Patello-femoral Joint. Sensors. 2022;22(10):3765.
  • 49. Szabelski J., Karpiński R., Machrowska A. Application of an Artificial Neural Network in the Modelling of Heat Curing Effects on the Strength of Adhesive Joints at Elevated Temperature with Imprecise Adhesive Mix Ratios. Materials. 2022;15(3):721.
  • 50. Karpiński R. Knee Joint Osteoarthritis Diagnosis Based On Selected Acoustic Signal Discriminants Using Machine Learning. acs. 2022;18(2):71–85.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b4de5f66-00c1-43b8-beab-200df53d7ec1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.