PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of coal thermal pretreatment on the electrochemical performance of molten hydroxide direct carbon fuel cell (MH-DCFC)

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The direct carbon fuel cell (DCFC) is a power generation device that converts the chemical energy of carbonaceous fuels (e.g. fossil coals, charred biomass, activated carbons, graphite, coke, carbon black, etc.) directly into electricity. However, the use of coal in the DCFC is sometimes problematic particularly if volatile matter evolves from the fuel during fuel cell operation. The recommended course of action to minimize that problem is to pre-treat thermally or even pyrolyze the coal and remove the volatiles before the fuel is used in the fuel cell. In this paper, three raw and thermally-treated coals of various origins have been compared for electrochemical activity in a direct carbon fuel cell with molten hydroxide electrolyte (MH-DCFC). The thermal pre-treatment of selected coals was carried out in an inert gas atmosphere at 1023 K. It was found that-compared to raw coals the pyrolyzed coals presented lower maximum current and power densities at 723 K but simultaneously provided faster stabilization of the open circuit voltage.
Rocznik
Strony
382--387
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Energy Engineering, Faculty of Infrastructure and Environment, University of Technology, ul. Brzeznicka 60a, 42-200 Czestochowa, Poland
  • Department of Energy Engineering, Faculty of Infrastructure and Environment, University of Technology, ul. Brzeznicka 60a, 42-200 Czestochowa, Poland
autor
  • Department of Energy Engineering, Faculty of Infrastructure and Environment, University of Technology, ul. Brzeznicka 60a, 42-200 Czestochowa, Poland
Bibliografia
  • [1] N. J. Cherepy, R. Krueger, K. J. Fiet, A. F. Jankowski, J. F. Cooper, Direct conversion of carbon fuels in a molten carbonate fuel cell, Journal of the Electrochemical Society 152 (1) (2005) A80–A87.
  • [2] O. D. Adeniyi, B. C. Ewan, Electrochemical conversion of switchgrass and poplar in molten carbonate direct carbon fuel cell, International Journal of Ambient Energy 33 (4) (2012) 204–208.
  • [3] M. Predtechensky, Y. D. Varlamov, S. Ul’yankin, Y. D. Dubov, Direct conversion of solid hydrocarbons in a molten carbonate fuel cell, Thermophysics and Aeromechanics 16 (4) (2009) 601–610.
  • [4] H. Zhang, L. Chen, J. Zhang, J. Chen, Performance analysis of a direct carbon fuel cell with molten carbonate electrolyte, Energy 68 (2014) 292–300.
  • [5] P. Desclaux, S. Nürnberger, M. Rzepka, U. Stimming, Investigation of direct carbon conversion at the surface of a YSZ electrolyte in a SOFC, international journal of hydrogen energy 36 (16) (2011) 10278–10281.
  • [6] M. Dudek, On the utilization of coal samples in direct carbon solid oxide fuel cell technology, Solid State Ionics 271 (2015) 121–127.
  • [7] J. Jewulski, M. Skrzypkiewicz, M. Struzik, I. Lubarska-Radziejewska, Lignite as a fuel for direct carbon fuel cell system, international journal of hydrogen energy 39 (36) (2014) 21778–21785.
  • [8] T. Nunoura, K. Dowaki, C. Fushimi, S. Allen, E. Mészáros, M. J. Antal, Performance of a first-generation, aqueous-alkaline biocarbon fuel cell, Industrial & engineering chemistry research 46 (3) (2007) 734–744.
  • [9] S. Zecevic, E. M. Patton, P. Parhami, Direct electrochemical power generation from carbon in fuel cells with molten hydroxide electrolyte, Chemical Engineering Communications 192 (12) (2005) 1655–1670.
  • [10] L. Guo, J. M. Calo, E. DiCocco, E. J. Bain, Development of a low temperature, molten hydroxide direct carbon fuel cell, Energy & Fuels 27 (3) (2013) 1712–1719.
  • [11] A. Kacprzak, R. Włodarczyk, R. Kobyłecki, M. Ścisłowska, Z. Bis, Fuel cell as part of clean technologies, Environmental Engineering IV,(Pawłowski A., Dudzińska MR, Pawłowski L., Eds.), CRC Press, Taylor & Francis Group, London (2013) 443–450.
  • [12] A. Kacprzak, R. Kobylecki, Z. Bis, Influence of temperature and composition of NaOH–KOH and NaOH–LiOH electrolytes on the performance of a direct carbon fuel cell, Journal of Power Sources 239 (2013) 409–414.
  • [13] A. Kacprzak, R. Kobyłecki, R. Włodarczyk, Z. Bis, The effect of fuel type on the performance of a direct carbon fuel cell with molten alkaline electrolyte, Journal of Power Sources 255 (2014) 179–186.
  • [14] A. Kacprzak, R. Kobyłecki, Z. Bis, The effects of operating conditions on the performance of a direct carbon fuel cell, Archives of Thermodynamics 34 (4) (2013) 187–197.
  • [15] L. Jia, Y. Tian, Q. Liu, C. Xia, J. Yu, Z. Wang, Y. Zhao, Y. Li, A direct carbon fuel cell with (molten carbonate)/(doped ceria) composite electrolyte, Journal of Power Sources 195 (17) (2010) 5581–5586.
  • [16] C. Jiang, J. T. Irvine, Catalysis and oxidation of carbon in a hybrid direct carbon fuel cell, Journal of Power Sources 196 (17) (2011) 7318–7322.
  • [17] L. Deleebeeck, A. Arenillas, J. Menéndez, K. K. Hansen, Hybrid direct carbon fuel cell anode processes investigated using a 3-electrode half-cell setup, international journal of hydrogen energy 40 (4) (2015) 1945–1958.
  • [18] X. Li, Z. Zhu, R. De Marco, J. Bradley, A. Dicks, Modification of coal as a fuel for the direct carbon fuel cell, The Journal of Physical Chemistry A 114 (11) (2009) 3855–3862.
  • [19] S. Eom, S. Ahn, Y. Rhie, K. Kang, Y. Sung, C. Moon, G. Choi, D. Kim, Influence of devolatilized gases composition from raw coal fuel in the lab scale DCFC (direct carbon fuel cell) system, Energy 74 (2014) 734–740.
  • [20] G. Liu, A. Zhou, J. Qiu, Y. Zhang, J. Cai, Y. Dang, Utilization of bituminous coal in a direct carbon fuel cell, International Journal of Hydrogen Energy 41 (20) (2016) 8576–8582.
  • [21] N. Kaklidis, V. Kyriakou, I. Garagounis, A. Arenillas, J. Menendez, G. Marnellos, M. Konsolakis, Effect of carbon type on the performance of a direct or hybrid carbon solid oxide fuel cell, RSC Advances 4 (36) (2014) 18792–18800.
  • [22] X. Xu, W. Zhou, F. Liang, Z. Zhu, A comparative study of different carbon fuels in an electrolyte-supported hybrid direct carbon fuel cell, Applied energy 108 (2013) 402–409.
  • [23] C. Jiang, J. Ma, A. Arenillas, A. D. Bonaccorso, J. T. Irvine, Comparative study of durability of hybrid direct carbon fuel cells with anthracite coal and bituminous coal, International Journal of Hydrogen Energy 41 (41) (2016) 18797–18806.
  • [24] X. Li, Z. Zhu, R. De Marco, J. Bradley, A. Dicks, Evaluation of raw coals as fuels for direct carbon fuel cells, Journal of Power Sources 195 (13) (2010) 4051–4058.
  • [25] J. F. Cooper, R. Selman, Electrochemical oxidation of carbon for electric power generation: a review, ECS Transactions 19 (14) (2009) 15–25.
  • [26] D. W. Krevelen, Coal–typology, physics, chemistry, constitution, Elsevier Science, 1993.
  • [27] L. D.R., Handbook of Chemistry and Physics, 90th edition, CRC, 2010.
  • [28] N. J. Cherepy, R. Krueger, K. J. Fiet, A. F. Jankowski, J. F. Cooper, Direct conversion of carbon fuels in a molten carbonate fuel cell, Journal of the Electrochemical Society 152 (1) (2005) A80–A87.
  • [29] B. Z. Kacprzak A., Kobyłecki R., Effect of fuel pretreatment with HNO3 on operational performance of a direct carbon fuel cell, Journal of Power Technologies, 96 (6) (2016,) 390–396.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b4c30254-ed94-468e-94f4-702f3fab1b03
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.