PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of Twin Screw Extrusion for Continuous Processing of Energetic Materials

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Continuous processing of energetic materials using a twin screw extruder is gaining importance as it is a safe and cost-effective alternative to conventional batch processing. The continuous process based on a twin screw extruder combines the capabilities of intensive mixing and high pressure extrusion. It is used for processing a variety of energetic materials, such as gun and rocket propellants, plastic bonded explosives, pyrotechnics, thermo-baric explosives, etc. The twin screw extruder process demands various safety features for the processing of energetic materials. Therefore, exhaustive characterisation of the energetic materials in terms of safety and rheology, coupled with characterisation of the mechanical components of the extruder, are essential for designing a safe continuous process. In this article, a technological overview of continuous processing for energetic materials is presented, along with its various features, process design methodology and safety issues.
Rocznik
Strony
507--522
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
autor
  • High Energy Materials Research Laboratory, Pune- 411021, India
  • Dept of Applied Chemistry, Defence Institute of Advanced Technology, Pune, India
autor
autor
  • Dept of Applied Chemistry, Defence Institute of Advanced Technology, Pune, India
autor
  • High Energy Materials Research Laboratory, Pune- 411021, India
  • High Energy Materials Research Laboratory, Pune- 411021, India
Bibliografia
  • [1] Fong C.W., Manufacture of Propellant and Polymer Bonded Explosives by Screw Extruder, DSTO Technical Report No WSRL-0456-TR, Department of Defence, Alelaide, Australia, 1986.
  • [2] Kowalczyk J.E., Equipment for Processing of Filled Binder Systems, 18th Int. Annu. Conf. ICT, Karlsruhe, Germany, 1987, 3-1-11.
  • [3] Kowalczyk J.E., Malik M., Kaylon D.M., Gevgilili H., Fair D.F., Mezger M., Fair, M., Safety in Design and Manufacturing of Extruders Used for Continuous Processing of Energetic Formulations; J. Energ. Mater., 2007, 24(4), 247-251.
  • [4] Müller O., Procedures for the Production of Gun Propellants by Use of Different Extruders, J. Hazard. Mater., 1983, 7(3), 169-186.
  • [5] Graham A., Reardon P., Pollution Burdens Associated with Load/Assemble/Pack of an AP based MK-66 PIP Motor by Continuous and Batch Processing, Waste Management, 1998, 17(2-3),113-121.
  • [6] Husband M., Continuous Processing of Composite Solid Propellants, Chem. Eng. Prog., 1989, 55-61.
  • [7] Johnson A., Closed Loop Energetics with VOC Emission Reduction (CLEVER), ESTCP Cost and Performance Report Project Technology Demonstration Plan − PP 9704; US Department of Defence, June 2003.
  • [8] Baker J.J , McSpadden H.J., Continuous Processing of Composite Propellants: What We Have Learned, 21st Int. Annu. Conf. ICT, Karlsruhe, Germany, 1990.
  • [9] Thepenier J., Advanced Technologies Available for Future Solid Propellant Grains, Acta Astronoutica, 2001, 48( 5-12), 245-255.
  • [10] Beaurain A., Souchier A., Sackheim R., Cikanek III H., Earth-to-orbit Rocket Propulsion, AIAA International Air and Space Symposium and Exposition: The Next 100 Years, Dayton, Ohio, July 14-17, 2003.
  • [11] Guery J.F., Chang I., Shimand T., Glick M., Boury D., Robert E., Napior J., Wardle R., Pérut C., Calabro M., Glick R., Habu H., Sekino N., Vigier G., d’Andrea B., Solid Propulsion for Space Applications: an Updated Roadmap, Acta Astronoutica, 2010, 66, 201-219.
  • [12] Marraud C., Aymonier A., Chounet G., A New Facility Based on Twin Screw Extruder for High Energy Propellant, Continuous Mixer and Extruder User Group Meeting, Proc. Semin., 14th, Indian Head, MD, Oct 11-12, 2006.
  • [13] Sikdar A.K., Reddy S., Review on Energetic Thermoplastic Elastomers (ETPEs) for Military Science, Propellants Explos. Pyrotech., 2013, 38, 14-28.
  • [14] Stevenson B., Campbell J., Twin Screw Extruder Processing of MTV Bases IR Decoy Compositions, International Pyrotechnics Seminar, Proc. Semin., 33rd, Fort Collins, Colorado, 2006, 207-222.
  • [15] Fair M.J., Twin Screw Extrusion of Aluminised Thermobaric Explosives, Proc. Insensitive Munitions and Energetic Materials Technology Symposium, April 2006.
  • [16] Kohlgruber K., Co-rotating Twin Screw Extruders: Fundamentals, Technology and Applications, Hanser Gardner Publications, Cincinnati, Ohio, 2008, ISBN 978-3-446-41372-6.
  • [17] Newman K.E., Gusack J.A., Zehmer J.A., Continuous Manufacture and Casting, US Patent 5114630, 1992.
  • [18] Tauzia J.M., Penel P., Maller G., Continuous Twin Screw Processes: Evolution of the Design of the Extruder with Regard to Safety Concerns, Continuous Mixer and Extruder User Group Meeting, Proc. Semin., 11th, MD, USA, 2002.
  • [19] Kaylon D.M., Twin Screw Extrusion Processing of Energetic Materials, AIChE Annual Meeting, Proc. Semin., San Francisco CA, Nov 16-21, 2003.
  • [20] Murphy C.M., Brough J.A., Muscato R.S., Continuous Processing of Composite Propellant, JANNAF Propulsion Meeting, Proc., Monterey, CA, Nov 15-19, 1993, 2, 313-318.
  • [21] Prickett S.E., Muscato R.S., Gonzalez C., Cline C.H., Processing of PBXN-111 on a Twin Screw Extruder, PEDCS JANNAF Subcommittee Meeting, Proc. Semin., 35th, Las Vegas, NV, 2009.
  • [22] Rose M., Harper M., Bradley S., Haaland A., A Method of Isolating Energetic Materials Feed System from Extrusion Processes, Proc. 10th JOCG, Continuous Mixer and Extruder Users Group Meeting, Ogden UT, 1999.
  • [23] Thomson R., Michienzi M., Continuous Processing Online Quality Control Using Near Infrared (NIR) Spectroscopy, Proc. 10th Continuous Mixer and Extruder Users Group Meeting, Ogden UT, 1999.
  • [24] Yaziki R., Kaylon D.M., Online and Off-line Analysis of the Extruded and Cast Energetic Materials for Micro Structural Distribution, Proc. 10th Continuous Mixer and Extruder Users Group Meeting, Ogden UT, 1999.
  • [25] Campbell J.A., The Use of Designated Experiments in the Process Development of Continuous Propellant Mixing, Proc. JANNAF Propulsion Meeting, 1993, 2, 125-133.
  • [26] Carter R.E., A New Purpose Built Continuous Processing Facility for Energetic Materials, Propellants Explos. Pyrotech., 1988, 13(3), 80-86.
  • [27] Williams M.A., Manufacturing Demonstration with Vacuum Casting System and Twin Screw Extruder, Proc. AIChE Annu. Meeting, Minneapolis, MN, 2011.
  • [28] Charlery R., Saulot A., Daly N., Berthier Y., Tribological Conditions Leading to Ignition of Energetic Materials, Leeds Lyon Symposium on Tribology and Tribochemistry Forum, Proc. Semin., 40th , Lyon, France, 2013.
  • [29] Schoolderman C., Hordijk A.C., Processing of Highly Filled Energetic Compositions − Simulation of a Double Co-rotating Screw Extruder and Complex Die Design, 33rd Int. Annu. Conf. ICT, Karlsruhe, Germany, 2002, 34-1-9.
  • [30] Gonzalez C., Prickett S.E., Muscato R.S., Baker J., Brown S.L., Thermal Decomposition in a Co-extrusion Process, Proc. 14th Continuous Mixer and Extruder User Group Meeting, MD, 2006.
  • [31] Diemer J., Chilles C., Colbert J., Miri T., Ingram A., David P., Sarhangi Fard A., Anderson P.D., Flow Visualisation in Co-rotating Twin Screw Extruders: Positron Emission Particle Tracking and Numerical Particle Trajectories, Int. Polym. Process., 2011, 26(5), 540-550.
  • [32] Gallant F.M., Bruck H.A., Prickett S.E., Cesarec M., Graded Polymer Composite Using Twin Screw Extruder: A Combinatorial Approach to Developing New Energetic Materials, Composites Part A, Applied Science and Manufacturing, 2006, 37(6), 957-969.
  • [33] Gallant F.M., Prickett S.E., Cesarec M., Bruck H.A., Ingredient and Processing Effect on Burning Rates of Composite Rocket Propellants Utilising a Reducedrun-mixture Process Experiment Design, Chemom. Intell. Lab. Syst., 2008, 90(1), 49-63
  • [34] Bigio D., Pappas W., Brown II H., Debebe B., Dunham W., Residence Shear Distribution in a Twin Screw Extruder, Proc. 69th Annual Technical Conference of the Society of Plastics Engineers (ANTEC), Boston, Massachusetts, 2011.
  • [35] Curry J., Feed Variance Limitations for Co-rotating Intermeshing Twin Screw Extruders, International Polymer Processing, VI, 1991, 2, 148-155.
  • [36] Condo A.C., Kosowski B.M., Processing of Materials using Reputable Microencapsules Containing Detection Materials, US Patent 5 059 261, 1990.
  • [37] Kaylon D.M., An Overview of the Rheological Behaviour and Characterisation of Energetic Formulations: Ramifications on Safety and Product Quality, J. Energ. Mater., 2006, 24(6), 213-245.
  • [38] Energetic Materials: Particle Processing and Characterisation, (Teipel U., Ed.), Wiley VCH, Weinheim, 2005, ISBN 9783527603923.
  • [39] Breton P.L., Ribérau D., Casting Process Impact on Small-scale Rocket Motor Ballistic Performance, J. Propul. Power, 2002, 18(6), 1211-1217.
  • [40] Gallant F.M., Effect of Twin Screw Extrusion Process on the Burning Rate of Composite Propellant, Propellants Explos. Pyrotech., 2006, 31(6), 456-465.
  • [41] Allende M., Fair D., Kaylon D.M., Chiu D., Moy S., Development of Particle Concentration Distribution and Burning Rate Gradients upon Shear Induced Particle Migration during Processing of Energetic Suspensions, J. Energ. Mater., 2007, 25(1), 49-67.
  • [42] Ozkan S., Gevgilli H., Kaylon D.M., Kowalczyk J., Mezgar M., Processing of Nanoenergetics with a Fully Functional Mini-twin Screw Extruder, J. Energ. Mater., 2007, 25(3), 173-201.
  • [43] Murphy C., Brough J., Mucato R.S., Co-extrusion of Energetic Materials Using Multiple Twin Screw Extruder, US Patent 7 063 810 B1, 2006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b4bc715f-5778-4ba3-a0c0-9e12704b8eb5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.