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Abstract
This article presents a method of determining the spatial orientation of measuring sensors. This method is based 
on isometric space transformation of a rigid body registered in an oblique coordinate system and is adopted 
for photogrammetric purposes. The approach is based on incomplete coordinate systems used for determi-
nation of transformation parameters. In this publication an incomplete coordinate system is one without one 
of the axes and in which the matching points connected to primary and secondary coordinate systems are on 
the two other axes. On the basis of angular momentum, translocation of the beginning of coordinate system is 
determined first. The next step is to calculate the Euler angles – exterior orientation of sensor. In this method 
the beginning (the center) of the coordinate system is associated with the sensor itself. This approach, in com-
parison with the methods known from photogrammetry and remote sensing, allows one to reduce the points 
needed for transformation. In case of determining the Euler angles two points are indispensable and, in case 
of moving the beginning of coordinate system, three points are essential. At the end of this paper the analysis 
of transformation, based on independent control points (ICP), was completed.

Introduction

Determining the spatial position of the elements 
of the world around us, a set of points defined gen-
erally by means of distances and angles, is carried 
out using various types of reference systems. These 
can be created with planes, surfaces or defined axes. 
Geodesy and photogrammetry use polar, spheri-
cal and rectangular (Cartesian) coordinate systems. 
In these systems external orientation elements 
of the measuring sensors are calculated generally 
in a simplified manner by using a so-called spatial 
(small-angles) rotation matrix (Sitek, 1991).

In rigid body mechanics a slightly different 
approach is used. Calculation of the spatial orienta-
tion of the sensor is performed based on the points 
located on the axis of rotation. Generally, in this way 
the Euler or Tait-Bryan angles are determined and 

clearly define the spatial orientation of sensors. This 
approach is also free from the limitation of rotating 
coordinate systems by only small angles, to apply 
the small-angle functions (Baranowski, 2013).

In this publication, the authors set themselves 
the objective of combining the above-mentioned 
approaches. The aim is to use spatial transforma-
tion of inclined systems (oblique coordinate system) 
known in rigid body mechanics and their application 
to the orientation sensors and instruments for sur-
veying, photogrammetry and remote sensing, where 
a different approach in transformation is used. This 
approach can be very useful in defining the positions 
of sensors mounted on Unmanned Aerial Systems 
(UAS).

Simultaneously, the authors of this thesis show 
that the orientation of sensors and instruments can be 
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made using incomplete coordinate systems (without 
one dimension) without a decline of final accuracy.

Spatial orientation of measuring sensors

The obliquity of sensors during measurement 
means that, in practice, the problem of transfor-
mation between the two coordinate systems often 
occurs. With control points which are known in both 
coordinate systems, calculation of the transformation 
parameters and application of a conversion function 
is possible. As a result, the coordinates of points 
in the secondary system are calculated on the basis 
of coordinates of the same points in the primary sys-
tem. Due to the good legibility and ease of describ-
ing to the various transformations, the vector and 
matrix are applied in calculation (Czarnecki, 2014).

Spatial orientation of two mutually angled sys-
tems can be determined on the basis of Euler angles 
(Figure 1).

Rotations that define the relationship between 
the axes of systems, may be expressed through 
cosines of angles which are created together by 
the various axes (hereafter successive rotations axes 
are marked with ' and "), and represented by a matrix 
B:
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In photogrammetry and remote sensing, determi-
nation of the spatial orientation of sensor is performed 

with a combination of three matrix rotations around 
each axis, which can be written (Kurczyński, 2014):
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where:
ω	 –	 rotation around x-axis;
φ	 –	 rotation around the y-axis;
κ	 –	 rotation around the z-axis;
X, Y, Z – coordinates in a secondary system (field);
x, y, z – coordinates in a primary (sensor);
X0, Y0, Z0 – vector of translation (shift of the system);
λ	 –	 the coefficient of change of scale (in isometric 

transformation).
Narrowed down to only the angular elements, 

the transformation is written in the form (Sitek, 
1991; Kurczyński, 2014):
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In this matrix a elements contain the angular 
elements of the external orientation of the sensor 
in the implicit form. For this reason, these equa-
tions are often linearized by expanding the function 
using the Taylor series and applying a small rota-
tion matrix, which uses the functions of small-angles 
(Czarnecki, 2014; Kędzierski, Fryśkowska & Wierz-
bicki, 2015):
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This approach is reasonable in the case of small-an-
gle rotations of systems (inclination of sensor), and 
in the opposite situation the use of interpolation or 
iteration algorithms becomes necessary (Preuss, & 
Kurczyński, 2011; Sanecki et al., 2015).

The application of spatial transformations to 
describe the absolute displacements of the space 
structures (for example, the hull structure of a ves-
sel), based on increments of small angles, were pre-
sented by Niebylski & Klewski (2015) (Preuss, 
Kurczyński, 2011):

Figure 1. The orientation of spatial systems using Euler 
angles (Czarnecki, 2014)
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In the shortened notation:

	 Ui = Uō + Φ Bi +ε Bi

where:
Ui	 –	 the displacement vector of the observed point 

Pi;
Uō	–	 vector of translation;
Φ	 –	 rotation matrix 3×3;
ε	 –	 deformation matrix 3×3;
Bi	 –	 coefficient matrix (of coordinates of Pi points).

A common feature of the listed forms of transfor-
mation is that they are based on small angles of rota-
tion. Meanwhile, in the case of the sensors mounted 
on, for example, UAV (Unmanned Aerial Vehicles), 
the angles of external orientation may exceed 10°, 
which leads to the need for additional processing 
(interpolation or iteration) (Kędzierski, Fryśkowska 
& Wierzbicki, 2015).

Incomplete coordinate systems

Depending on whether the axes representing 
the coordinate system are determined on the plane 
(x, y) or in the space (x, y, z), the system can be flat 
or three-dimensional. In this case of using a spa-
tial system (without one axis), we would not have 
their full record, and have to deal with an incom-
plete coordinate system. Niebylski and Klewski 
(2015) use the concept of the incomplete system, 
as a Cartesian system, which overcomes one or two 
coordinate axes. In practice, the photogrammetric 
approach to the determination of exterior orientation 
of sensors using the equation (2) (except the previ-
ously described simplifications) eliminates the ver-
tical axis Z, assuming for all points value Z = 0. By 
configuring next the equation the space transforma-
tion to the plane is obtained, this is known as a DLT 
(Direct Linear Transformation) transformation, and 
can be written:
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The equation (6) is an alternative to isomet-
ric transformation (by similarity) and is used 
for the processing of images which come from 
the non-metric sensors, for the flat ground. It con-
tains eleven unknowns (A1, B1, C1, ... D2), so to 
transform coordinates from the original (x, y, z) to 
the secondary system (X, Y – incomplete) six control 
points are needed. In practice, in the case of sensors 
mounted on the platform (UAVs), the incomplete 
plane orthogonal coordinate system is often used to 
determine the position and orientation of the sensor 
(external orientation elements).

The method of determining exterior 
orientation

The method of determining the angular exte-
rior orientation elements of the measuring sensors 
consists of using an approach known in rigid body 
mechanics, in which points are located on the axes 
(before transformation) (Jeżewski, 1970; Baranow-
ski, 2013).

Defining the next three rotations with Tait-Bryan 
angles (as in Figure 2). With two points situated on 
the axes, providing an incomplete coordinate system, 
the angular orientation of the sensor elements can be 
determined through the following transformations:
1.	 Pitch (φ) – Z-axis – plane ZX
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The point on the axis Z. After the angle is 
calculated, the transformation is performed for 
the – φ angle and then the new coordinates are 
calculated.

2.	 Roll (ω) – Z-axis – plane YZ
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Figure 2. Rotation of coordinate systems: Pitch, Roll, Yaw – 
Tait-Bryan angles (Wikipedia, 2015)
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The point on the axis Z. After the angle is 
calculated, the transformation is performed for 
the – ω angle and then the new coordinates are 
calculated.

3.	 Yaw (ω) – X-axis – plane XY
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The point on the axis X. After the angle is 
calculated, the transformation is performed for 
the – κ angle and then the new coordinates are 
calculated.
In this method, the setting of the axis (choice 

of planes) is free. It is enough to take the motion 
of the sensor as shown in Figure 2 and apply the order 
of calculation as shown in the relationships (7).  
It is connected with the appropriate setting (reorien-
tation) of the axis and subsequently with calculating 
angles: Pitch, Roll, Yaw. With this approach individ-
ual angles are not dependent on each other and there 
is the possibility of their independent calculation.

The verification of the method

The method of determining exterior orientation 
of the measuring sensors has been verified in the lab-
oratory and in the field. In the laboratory, the coordi-
nates of the ten points (in [m]) and angles of rotation 
were assumed, as follows:
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where the first row of the matrix p are X, the second 
Y, and the third Z coordinates;
rotation angles:

	 ω := –20°, φ := –15°, κ := –25°	 (9)

After rotations for the coordinates as adopted above, 
the matrix took the form (10).

Where A is the matrix calculated on the basis 
of rotation according to (2) and (3) for the assumed 
values of the angles (9), and takes the form (11).

As the result of reverse transformation, the set 
of points were found (12).

Comparing the coordinates of the points obtained 
by the matrix (8) and (12) it can be seen that the dif-
ferences in the coordinates are less than 10–15  m. 
These differences occur only for points lying on 
the axes of the coordinate system, and are at a neg-
ligible level.

The terrain verification was performed in a simi-
lar manner. For this purpose, the control points were 
founded and the coordinates before and after rota-
tion of the sensor (the total station) were calculated 
in the same way. Subsequently, the inverse transfor-
mation and the origin coordinates were compared. 
Finally, assuming that the distribution of errors is 
accidentally determined, the mean error (standard 
deviation) of measured points and the mean error 
with which it has been calculated, gave:

  m004.0,m012.0
1
][ 0

00 



n
mM

n
VVm  

 

	 (13)

where:
V	 –	 the difference between the length of the vector 

(location of points) in the compared systems;
n	 –	 the number of points of analyzed space.
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Conclusions

The presented method is based on rigid body 
transformation of Tait-Bryan angles. This approach 
reduces the number of control points needed for 
transformation (in both coordinate systems) to 
two. These points can be located at any two axes 
of the coordinate system. The method thus allows 
determination of the angular exterior orientation 
of the sensor using an incomplete coordinate system, 
while simultaneously reducing adjustment points 
(compared to the transformations commonly used 
in surveying, photogrammetry and remote sensing). 
In addition:
•	 the presented method can be used for any angles 

and is not limited to small angles and their 
functions;

•	 there is no need for transforming function 
linearization;

•	 there is no need for an additional interpolation and 
iteration.
In analyzing the accuracy of this method, it 

should be emphasized that in the laboratory, the com-
patibility of points after the inverse transformation 
was at the level of numerical accuracy of 10–15 m. 
Under field conditions the accuracy was within 
0.012 m. Hence, the accuracy is typical for mea-
surements by total station as a result of instrumental, 

environmental and personal errors. Taking this into 
account the results should also be recognized as sat-
isfactory. According to the authors, this method may 
be an alternative to those currently used in photo-
grammetry and remote sensing for the determination 
of the spatial orientation of the measuring sensors.
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