PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Towards energy-aware cyber-physical systems verification and optimization

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Federated Conference on Computer Science and Information Systems (16 ; 02-05.09.2021 ; online)
Języki publikacji
EN
Abstrakty
EN
Optimizing CPS behavior in terms of energy consumption can have a significant impact on system reliability. The environment influences the system's behavior, and neglecting the environmental behavior has indirect negative impact on optimizing the system's behavior. In this work, to increase the system's flexibility, the behavior of the environment is modeled dynamically to apply the disorderliness of its behavior. The resulting models are formally verified. By examining the past environmental behavior and predicting its future behavior, energy optimization is done more dynamically. The verification results acquired using a UPPAAL-SMC show that the optimization of system behavior by predicting the environmental behavior has been successful. Our approach is demonstrated using a case study within an I4 setting.
Rocznik
Tom
Strony
205--210
Opis fizyczny
Bibliogr. 19 poz., il.
Twórcy
autor
  • University of Southern Denmark, The Mærsk Mc-Kinney Møller Institute SDU Software Engineering, Odense, Denmark
  • University of Southern Denmark, The Mærsk Mc-Kinney Møller Institute SDU Software Engineering, Odense, Denmark
  • University of Southern Denmark, The Mærsk Mc-Kinney Møller Institute SDU Software Engineering, Odense, Denmark
Bibliografia
  • 1. U. Nations, “The 17 goals for sustainable development,” 2015. [Online]. Available: https://sdgs.un.org/goals
  • 2. J. Lygeros and M. Prandini, “Stochastic hybrid systems: A powerful framework for complex, large scale applications,” European Journal of Control, vol. 16, p. 583-594, 11 2010.
  • 3. E.-Y. Kang, D. Mu, and L. Huang, “Probabilistic verification of timing constraints in automotive systems using uppaal-smc,” in Integrated Formal Methods, ser. EuroSys ’10. Cham: Springer International Publishing, 2018, pp. 236-254.
  • 4. E.-Y. Kang, D. Mu, L. Huang, and Q. Lan, “Model-based analysis of timing and energy constraints in an autonomous vehicle system,” in 2017 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C), 2017, pp. 525-532.
  • 5. E.-Y. Kang, D. Mu, L. Huang, and Q. Lan, “Verification and validation of a cyber-physical system in the automotive domain,” in 2017 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C), 2017, pp. 326-333.
  • 6. E.-Y. Kang, L. Huang, and D. Mu, “Formal verification of energy and timed requirements for a cooperative automotive system,” in Proceedings of the 33rd Annual ACM Symposium on Applied Computing, ser. SAC ’18. New York, NY, USA: Association for Computing Machinery, 2018, p. 1492-1499. [Online]. Available: https://doi.org/10.1145/3167132.3167291
  • 7. S. C. Jepsen, T. I. Mørk, J. Hviid, and T. Worm, “A pilot study of industry 4.0 asset interoperability challenges in an industry 4.0 laboratory,” in 2020 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), 2020, pp. 571-575.
  • 8. “Effimat automated warehouses.” [Online]. Available: https://effimat.com/
  • 9. “Enabled robotics.” [Online]. Available: https://www.enabled-robotics.com/
  • 10. “Collaborative robots universal robots.” [Online]. Available: https://www.universal-robots.com/
  • 11. A. David, K. Larsen, A. Legay, M. Mikučionis, and D. Poulsen, “Uppaal smc tutorial,” International Journal on Software Tools for Technology Transfer, vol. 17, 01 2015.
  • 12. D. Meike, M. Pellicciari, G. Berselli, A. Vergnano, and L. Ribickis, “Increasing the energy efficiency of multi-robot production lines in the automotive industry,” IEEE International Conference on Automation Science and Engineering, pp. 700-705, 2012.
  • 13. A. Vergnano, C. Thorstensson, B. Lennartson, P. Falkman, M. Pellicciari, F. Leali, and S. Biller, “Modeling and optimization of energy consumption in cooperative multi-robot systems,” IEEE Transactions on Automation Science and Engineering, vol. 9, no. 2, pp. 423-428, 2012.
  • 14. D. Meike, M. Pellicciari, and G. Berselli, “Energy efficient use of multirobot production lines in the automotive industry: Detailed system modeling and optimization,” IEEE Transactions on Automation Science and Engineering, vol. 11, no. 3, pp. 798-809, 2014.
  • 15. M. Pellicciari, G. Berselli, F. Leali, and A. Vergnano, “A method for reducing the energy consumption of pick-and-place industrial robots,” Mechatronics, vol. 23, no. 3, pp. 326-334, 2013. [Online]. Available: http://dx.doi.org/10.1016/j.mechatronics.2013.01.013
  • 16. A. Gamatié, G. Sassatelli, and M. Mikučionis, Modeling and Analysis for Energy-Driven Computing using Statistical Model-Checking; Design, Automation and Test in Europe Conference, Virtual, France., 02 2021.
  • 17. L. Huang and E.-Y. Kang, “Formal verification of safety & security related timing constraints for a cooperative automotive system,” in Fundamental Approaches to Software Engineering, R. Hähnle and W. van der Aalst, Eds. Cham: Springer International Publishing, 2019, pp. 210-227.
  • 18. A. Kuhnle and G. Lanza, “Application of reinforcement learning in production planning and control of cyber physical production systems,” in Machine Learning for Cyber Physical Systems, J. Beyerer, C. Kühnert, and O. Niggemann, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019, pp. 123-132.
  • 19. H. Li, “Entropy reduction via communications in cyber physical systems: How to feed maxwell’s demon?” in 2015 IEEE International Symposium on Information Theory (ISIT), 2015, pp. 2206-2210.
Uwagi
1. This research has been performed under the EF-CPS: Trustworthy CPS & IoT within I4 project, and “Energy-efficient Programming of Collaborative Robots” project funded by ELFORSK.
1. Track 4: Software, System and Service Engineering
2. Session: Joint 41st IEEE Software Engineering Workshop and 8th International Workshop on Cyber-Physical Systems
3. Position papers
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b4b5569a-5962-42d5-a6d9-6f215ff496ca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.