PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Regularly log-periodic functions and some applications

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We prove a Tauberian theorem for the Laplace-Stieltjes transform, a Karamata-type theorem, and a monotone density theorem in the framework of regularly log-periodic functions. We provide several applications of these results: for example, we prove that the tail of a nonnegative random variable is regularly log-periodic if and only if the same holds for its Laplace transform at 0, and we determine the exact tail behavior of fixed points of certain smoothing transforms.
Rocznik
Strony
159--182
Opis fizyczny
Bibliogr. 38 poz.
Twórcy
autor
  • MTA-SZTE Analysis and Stochastics Research Group, Bolyai Institute, Aradi vértanúk tere 1, 6720 Szeged, Hungary
Bibliografia
  • [1] G. Alsmeyer, J. D. Biggins, and M. Meiners, The functional equation of the smoothing transform, Ann. Probab. 40 (2012), 2069-2105.
  • [2] K. B. Athreya and P. E. Ney, Branching Processes, Springer, New York, 1972.
  • [3] I. Berkes, L. Györfi, and P. Kevei, Tail probabilities of St. Petersburg sums, trimmed sums, and their limit, J. Theoret. Probab. 30 (2017), 1104-1129.
  • [4] J. D. Biggins and N. H. Bingham, Large deviations in the supercritical branching process, Adv. Appl. Probab. 25 (1993), 757-772.
  • [5] J. D. Biggins and A. E. Kyprianou, Fixed points of the smoothing transform: the boundary case, Electron. J. Probab. 10 (2005), 609-631.
  • [6] N. H. Bingham, On the limit of a supercritical branching process, J. Appl. Probab. 25A (1988) (special volume), 215-228.
  • [7] N. H. Bingham and R. A. Doney, Asymptotic properties of supercritical branching processes. I. The Galton-Watson process, Adv. Appl. Probab. 6 (1974), 711-731.
  • [8] N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular Variation, Encyclopedia Math. Appl. 27, Cambridge Univ. Press, Cambridge, 1989.
  • [9] V. V. Buldygin, K.-H. Indlekofer, O. I. Klesov, and J. G. Steinebach, Pseudo-Regularly Varying Functions and Generalized Renewal Processes, Springer, 2018.
  • [10] V. V. Buldigīn and V. V. Pavlenkov, A generalization of Karamata’s theorem on the asymptotic behavior of integrals, Teor. Ĭmovīr. Mat. Statist. 81 (2009), 13-24 (in Ukrainian); English transl.: Theory Probab. Math. Statist. 81 (2010), 15-26.
  • [11] V. V. Buldygin and V. V. Pavlenkov, Karamata theorem for regularly log-periodic functions, Ukrainian Math. J. 64 (2013), 1635-1657.
  • [12] D. Buraczewski, E. Damek, and T. Mikosch, Stochastic Models with Power-Law Tails. The Equation X = AX + B, Springer, 2016.
  • [13] R. Chaudhuri and V. Pipiras, Non-Gaussian semi-stable laws arising in sampling of finite point processes, Bernoulli 22 (2016), 1055-1092.
  • [14] S. Csörgő, Rates of merge in generalized St. Petersburg games, Acta Sci. Math. (Szeged) 68 (2002), 815-847.
  • [15] S. Dubuc, Problèmes relatifs à l’itération de fonctions suggérés par les processus en cascade, Ann. Inst. Fourier (Grenoble) 21 (1971), no. 1, 171-251.
  • [16] R. Durrett and T. M. Liggett, Fixed points of the smoothing transformation, Z. Wahrsch. Verw. Gebiete 64 (1983), 275-301.
  • [17] W. Feller, On the classical Tauberian theorems, Arch. Math. (Basel) 14 (1963), 317-322.
  • [18] K. Fleischmann and V. Wachtel, On the left tail asymptotics for the limit law of supercritical Galton-Watson processes in the Böttcher case, Ann. Inst. H. Poincaré Probab. Statist. 45 (2009), 201-225.
  • [19] C. M. Goldie, Implicit renewal theory and tails of solutions of random equations, Ann. Appl. Probab. 1 (1991), 126-166.
  • [20] A. K. Grincevičius, One limit distribution for a random walk on the line, Lithuanian Math. J. 15 (1975), 580-589.
  • [21] I. V. Grinevich and Y. S. Khokhlov, Domains of attraction of semistable laws, Teor. Veroyatnost. i Primenen. 40 (1995), 417-422 (in Russian); English transl.: Theory Probab. Appl. 40 (1995), 361-366.
  • [22] Y. Guivarc’h, Sur une extension de la notion de loi semi-stable, Ann. Inst. H. Poincaré Probab. Statist. 26 (1990), 261-285.
  • [23] T. E. Harris, Branching processes, Ann. Math. Statist. 19 (1948), 474-494.
  • [24] T. Huillet, A. Porzio, and M. B. Alaya, On Lévy stable and semistable distributions, Fractals 9 (2001), 347-364.
  • [25] A. Iksanov, Renewal Theory for Perturbed Random Walks and Similar Processes, Springer, 2016.
  • [26] P. R. Jelenković and M. Olvera-Cravioto, Implicit renewal theorem for trees with general weights, Stochastic Process. Appl. 122 (2012), 3209-3238.
  • [27] P. Kevei, Implicit renewal theory in the arithmetic case, J. Appl. Probab. 54 (2017), 732-749.
  • [28] B. I. Korenblyum, On the asymptotic behavior of Laplace integrals near the boundary of a region of convergence, Dokl. Akad. Nauk SSSR (N.S.) 104 (1955), 173-176 (in Russian).
  • [29] K.-S. Lau and C. R. Rao, Integrated Cauchy functional equation and characterizations of the exponential law, Sankhyā Ser. A 44 (1982), 72-90.
  • [30] Q. Liu, On generalized multiplicative cascades, Stochastic Process. Appl. 86 (2000), 263-286.
  • [31] B. Mandelbrot, Multiplications aléatoires itérées et distributions invariantes par moyenne pondérée aléatoire, C. R. Acad. Sci. Paris Sér. A 278 (1974), 289-292.
  • [32] M. M. Meerschaert and H.-P. Scheffler, Limit Distributions for Sums of Independent Random Vectors, Wiley, New York, 2001.
  • [33] Z. Megyesi, A probabilistic approach to semistable laws and their domains of partial attraction, Acta Sci. Math. (Szeged) 66 (2000), 403-434.
  • [34] T. Shimura and T. Watanabe, Infinite divisibility and generalized subexponentiality, Bernoulli 11 (2005), 445-469.
  • [35] D. Sornette, Discrete-scale invariance and complex dimensions, Phys. Rep. 297 (1998), 239-270.
  • [36] U. Stadtmüller and R. Trautner, Tauberian theorems for Laplace transforms, J. Reine Angew. Math. 311/312 (1979), 283-290.
  • [37] V. I. Vakhtel’, D. E. Denisov, and D. A. Korshunov, On the asymptotics of the tail of distribution of a supercritical Galton-Watson process in the case of heavy tails, Trudy Mat. Inst. Steklova 282 (2013), 288-314.
  • [38] T. Watanabe and K. Yamamuro, Tail behaviors of semi-stable distributions, J. Math. Anal. Appl. 393 (2012), 108-121.
Uwagi
Dedicated to the memory of Gyula Pap
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b4b23a30-b64c-4910-aaa9-df29f1503603
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.