PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The assessment of the technical condition of a tire belt using computed tomography

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Car tire belting is a key structural element. Its operation in the tire determines the maintenance of the geometrical stability of the pneumatic wheel in conditions of variable operational loads. The belt creates a spatial composite structure in which the structural component is usually made of braided steel strands. The even arrangement of the fibers in the belt determines its mechanical properties. Under normal conditions, the belting is invisible in used tires and its technical condition is difficult to assess. The arrangement of the belt wires in the tire can be seen usingX-ray imaging, which was used in this work. In the conducted research, various configurations of the lamp settings and the detector of the measurement system were tested. On the basis of the tests performed, it is possible to assess irregularities in the belting resulting from manufacturing errors. However, a more important application of the obtained results is the possibility of assessing operating wear. Delamination in the belt detected during the tests reduce the safety of using such tires.
Rocznik
Strony
art. no. 183177
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
  • Silesian University of Technology, Poland
  • Opole University of Technology, Poland
Bibliografia
  • 1. Anouncia S. M., Saravanan R.: Non-destructive Testing using Radiographic Images -A Survey. Insight, Vol. 48, No. 10, 2006, pp. 592-597. DOI:10.1784/insi.2006.48.10.592
  • 2. Brol S., Czok R., Mroz P.: Control of energy conversion and flow in hydraulic-pneumatic system, (2020) Energy, 194 , art. no. 116849, https://doi.org/10.1016/j.energy.2019.116849
  • 3. Brol S., Mamala J.: Application of spectral and wavelet analysis in power train system diagnostic, (2010) SAE Technical Papers. https://doi.org/10.4271/2010-01-0250.https://doi.org/10.4271/2010-01-0250
  • 4. Brol S., Szegda A.: Magnetism of automotive wheels with pneumatic radial tires, (2018) Measurement: Journal of the International Measurement Confederation, 126 , pp. 37-45. https://doi.org/10.1016/j.measurement.2018.05.034
  • 5. Brol S., Warczek J.: Utilization of magnetic signature of automotive tire for exploitational wear assessment. DIAGNOSTYKA, 2022, Vol. 23, No. 4. DOI: https://doi.org/10.29354/diag/156255
  • 6. Carmignato S., Aloisi V., Medeossi F., Zanini F., Savio E.: Influence of surface roughness on computed tomography dimensionalmeasurements. CIRP Annals -Manufacturing Technology 66 (2017). P. 499-502. https://doi.org/10.1016/j.cirp.2017.04.067
  • 7. Clark S.K. et al. Mechanics of Pneumatic Tires. National Bureau of Standards, U.S. Department of Commerce. 1971.
  • 8. Clark S.K. et al. The Pneumatic Tire. U.S. Department of Transportation, National Highway Traffic Safety Administration. February 2006
  • 9. De Chiffre L., Carmignato S., Kruth J.-P., Schmitt R., Weckenmann A.: Industrial applications of computed tomography. CIRP Annals -Manufacturing Technology 63 (2014). P. 655-677. https://doi.org/10.1016/j.cirp.2014.05.011
  • 10. Egbert A.: High-Resolution X-Ray CT for 3D Failure Analysis and Metrology, FOP:s vårkonferens 2012, Sandviken/SWEDEN
  • 11. Fei Wang: Enhanced Tire Quality Controls by Novel X-ray Digital Detectors. NDT Technician Newsletter, Vol. 16, No. 1, pp: 8-11
  • 12. Grzesik W., Brol S.: Identification of surface generation mechanisms based on process feed-back and decomposition of feed marks. (2011) Advanced Materials Research, 223 , pp. 505-513. https://doi.org/10.4028/www.scientific.net/AMR.223.505
  • 13. Guo Zhao, Shiyin Qin: High-Precision Detection of Defects of Tire Texture Through X-ray Imaging Based on Local Inverse Difference Moment Features. Sensors 2018, 18(8), 2524; https://doi.org/10.3390/s18082524
  • 14. Hermena S., Young M.: CT-scan Image Production Procedures, National Center for Biotechnology, 2022. https://www.ncbi.nlm.nih.gov/books/NBK574548/
  • 15. Hongxia Sun, Naijie Gu, Chuanwen Lin: Tire Impurity Defect Detection Based on Grayscale Correction and Threading Method. 2021IEEE the 6th International Conference on Computer and Communication Systems. 978-0-7381-2604-3/21/ 2021 IEEE. DOI:10.1109/ICCCS52626.2021.9449103
  • 16. Jantos J., Brol S., Mamala J.: Problems in assessing road vehicle driveability parameters determined with the aid of accelerometer. (2007) SAE Technical Papers. https://doi.org/10.4271/2007-01-1473.
  • 17. Jazar R. N.: Vehicle Dynamics: Theory and Application. Springer, Boston, MA. 2008.https://doi.org/10.1007/978-0-387-74244-1
  • 18. Kruth J.P., Bartscher M., Carmignato S., Schmitt R., De Chiffre L., Weckenmann A.: Computed tomography for dimensional metrology. CIRP Annals -Manufacturing Technology 60 (2011). P. 821-842. https://doi.org/10.1016/j.cirp.2011.05.006
  • 19. Mamala J., Brol S., Graba G.: Hardware-in-the-loop type simulator of spark ignition engine control unit, (2013) International Symposium on Electrodynamic and Mechatronic Systems, SELM 2013 -Proceedings, , art. no. 6562970 , pp. 41-42. DOI:10.1109/SELM.2013.6562970
  • 20. Mamala J.J., Brol S., Jantos J.: The estimation of the engine power with use of an accelerometer, (2010) SAE Technical Papers. https://doi.org/10.4271/2010-01-0929.
  • 21. Moj K., Robak G., Owsiński R., Kurek A., Żak K., Przysiężniuk D.: A new approach for designing cellular structures: design process, manufacturing and structure analysis using a volumetric scanner. Journal of Mechanical Science and Technology 37 (3) 2023, p.1113-1118. https://doi.org/10.1007/s12206-022-2107-1
  • 22. Nieslonya P., Krolczyka G. M., Wojciechowski S., Chudya R., Żak K., Maruda R. W.: Surface quality and topographic inspection of variable compliance part after precise turning. Applied Surface Science 434. 2018. p. 91-101. https://doi.org/10.1016/j.apsusc.2017.10.158
  • 23. Praznowski K., Brol S., Augustynowicz A.: Identification of static unbalance wheel of passenger car carried out on a road, (2014) Solid State Phenomena, 214 , pp. 48-57. https://doi.org/10.4028/www.scientific.net/SSP.214.48
  • 24. Qiang Guo, Caiming Zhang, Hui Liu, Xiaofeng Zhang: Defect Detection in Tire X-Ray Images Using Weighted Texture Dissimilarity. Journal of Sensors. Volume 2016, Article ID 4140175, 12 pages. https://doi.org/10.1155/2016/4140175
  • 25. Qidan Zhu, Xiaotian Ai: The Defect Detection Algorithm for Tire X-ray Images Based on Deep Learning. 2018 3rd IEEE International Conference on Image, Vision and Computing. 978-1-5386-4991-6/18/$31.00 2018 IEEE. DOI: 10.1109/ICIVC.2018.8492908
  • 26. Ratajczyk E.: X-ray computed tomography for industrial tasks. Pomiary Automatyka Robotyka vol. 5. 2012. P. 104-113.
  • 27. Saberironaghi A., Ren J., El-Gindy M.: Defect Detection Methods for Industrial Products Using Deep Learning Techniques: A Review. Algorithms 2023, 16, 95. https://doi.org/10.3390/a16020095
  • 28. Valavanis I., Kosmopoulos D.: Multiclass Defect Detection and Classification in Weld Radiographic Images using Geometric and Texture Features. Expert Systems with Applications, Vol. 37, No. 12, 2010, pp. 7606-7614. https://doi.org/10.1016/j.eswa.2010.04.082
  • 29. Warczek J., Burdzik R., Konieczny Ł., Siwiec G. Frequency analysis of noise generated by pneumatic wheels. Archives of Acoustics. Volume 42, Issue 3, Pages 459 -467. 2017. DOI 10.1515/aoa-2017-0048
  • 30. Xin Yi, Chen Peng, Zhen Zhang, Liang Xiao: The defect detection for X-ray images based on a new lightweight semantic segmentation network. Mathematical Biosciences and Engineering Volume 19, Issue 4, 4178-4195. DOI: 10.3934/mbe.2022193
  • 31. Yan Zhang, Dimitri Lefebvre, Qingling Li: Automatic Detection of Defects in Tire Radiographic Images. IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 14, NO. 3, JULY 2017. DOI: 10.1109/TASE.2015.2469594
  • 32. Yan Zhang, Li Tao, Li Qing-Ling: Detection of Foreign Bodies and Bubble Defects in Tire Radiography Images Based on Total Variation and Edge Detection. Chinese Physics Letters, Vol. 30, No. 8, 2013. DOI:10.1088/0256-307X/30/8/084205
  • 33. Yilin Wang , Yulong Zhang, Li Zheng, Liedong Yin, Jinshui Chen, Jiangang Lu: Unsupervised Learning with Generative Adversarial Network for Automatic Tire Defect Detection from X-ray Images. Sensors 2021, 21(20), 6773; https://doi.org/10.3390/s21206773
  • 34. Ying Li, Binbin Fan, Weiping Zhang, Zhiqiang Jiang: A high recall rate method for practical application of tire defect type classification. Future Generation Computer Systems 125 (2021) 1-9. https://doi.org/10.1016/j.future.2021.06.009
  • 35. Zeju Wu, Jiajia Lin, Wenjing Liu: Joint inspection in X-ray #0 belt tire based on periodic texture. Multimedia Tools and Applications (2019) 78:9299-9310 https://doi.org/10.1007/s11042-018-6507-2
  • 36. Zhouzhou Zheng, , Sen Zhang, Bin Yu, Qingdang Li, Yan Zhang: Defect Inspection in Tire Radiographic Image Using Concise Semantic Segmentation Digital Object Identifier. IEEE Access 10.1109/ACCESS.2020.3003089 DOI: 10.1109/ACCESS.2020.3003089
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b4ad9670-f67a-49a8-bb43-b7d879e987db
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.