PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hazards of uncontrolled methane release from clathrates analyse and environmental evaluation of extraction methods

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Uncontrolled methane release from clathrates may intensify global warming, causes deoxygenation and changes of pH of oceanic water, prompt tsunami and other hazards. On the other hand, it can be a great source of unconventional fossil fuels in the future, when conventional sources will be depleted and renewable sources not enough developed. The problem is how to ensure its safe exploitation. Methane clathrate breakdown, environmental impacts and feedback between them are presented and possible commercial methods of methane exploitation are compared. Finally, a selected method of methane clathrate exploitation that minimalizes environmental hazards is proposed. Among possible methods such as thermal stimulation, depressurization, inhibitor injection and gas exchange, only the latter one is ecologically friendly and can diminish climate warming with simultaneous CO2 sequestration.
Rocznik
Strony
99--111
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
autor
  • Institute of Environment Protection Engineering, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław
autor
  • Institute of Environment Protection Engineering, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław
Bibliografia
  • [1] MILKOV A.V., Global estimates of hydrate-bound gas in marine sediments: how much is really out there?, Earth-Sci. Rev., 2004, 66 (3–4), 183.
  • [2] MAKOGON Y.F., MAKOGON T.Y., MALYSHEV A., Technical limits for development of natural gas hydrate deposits, Proc. 6th International Conference on Gas Hydrates (ICGH 2008), Vancouver, British Columbia, Canada, July 6–10, 2008.
  • [3] MAJOROWICZ J. A., HANNIGAN P.K., Stability zone of natural gas hydrates in a permafrost-bearing region of the Beaufort–Mackenzie Basin. Study of a feasible energy source, Nat. Resour. Res., 2000, 9 (1), 3.
  • [4] COLLETT T.S., LEWIS R., UCHIDA T., Growing interest in gas hydrate, Oilfield Rev., 2000, 12 (2), 42.
  • [5] GLASBY G.P., Potential impact on climate of the exploitation of methane hydrate deposits offshore, Mar. Pet. Geol., 2003, 20 (2), 163.
  • [6] SUN R., DUAN Z., An accurate model to predict the thermodynamic stability of methane hydrate and methane solubility in marine environments, Chem. Geol., 2007, 244 (1–2), 248.
  • [7] KROEGER K., PRIMIO R., HORSFIELD B., Atmospheric methane from organic carbon mobilization in sedimentary basins. The sleeping giant?, Earth-Sci. Rev., 2011, 107 (3–4), 423.
  • [8] WUEBBLES D.J., HAYHOE K., Atmospheric methane and global change, Earth-Sci. Rev., 2002, 57 (3–4), 177.
  • [9] JIANG G., SHI X., ZHANG S., Methane seeps, methane hydrate destabilization, and the late Neoproterozoic postglacial cap carbonates, Chin. Sci. Bull., 2006, 51 (10), 1152.
  • [10] HEYDARI E., HASSANZADEH J., Deev Jahi Model of the Permian-Triassic boundary mass extinction. A case for gas hydrates as the main cause of biological crisis on Earth, Sediment. Geol., 2003,163 (1–2), 147.
  • [11] JIANG G., KENNEDY M.J., CHRISTIE-BLICK N., Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates, Nature, 2003, 426 (18/25), 822.
  • [12] PAULL C.K., USSLER I.W., DILLON W.P., Potential role of gas hydrate decomposition in generating submarine slope failures, Natural Gas Hydrate, Coastal Systems and Continental Margins, 2003, 5, 149.
  • [13] BEAUCHAMP B., Natural gas hydrates: myths, facts and issues, C. R. Geosci, 2004, 336 (9), 751.
  • [14] DILLON W.P., NEALON J.W., TAYLOR M.H., LEE M.W., DRURY R.M., ANTON C.H., Seafloor collapse and methane venting associated with gas hydrate on the Blake Ridge. Causes and implications to seafloor stability and methane release in natural gas hydrates: occurrence, distribution, and detection, American Geophysical Union, Washington 2001, Geophys. Monogr. Ser., 124, 211–233.
  • [15] SHAKHOVA N., SEMILETOV I., Methane release and coastal environment in the East Siberian Arctic shelf, J. Mar. Syst., 2007, 66 (1–4), 227.
  • [16] WESTBROOK G.K., THATCHER K.E., ROHLING E.J., PIOTROWSKI A.M., LIKE H.P, OSBORNE A.H., NISBET E.G., MINSHULL T.A., LANOISELLE M., JAMES R.H., HÜHNERBACH V., GREEN D., FISHER R.E., CROCKER A.J., CHABERT A., BOLTON C., BESZCZYNSKA-MÖLLER A., BERNDT C., AQUILINA A., Escape of methane gas from the seabed along the West Spitsbergen continental margin, Geophys. Res. Lett., 2009, 36 (15), 1.
  • [17] DEMIRBAS A., Methane hydrates as potential energy resource. Part 2. Methane production processes from gas hydrates, Energ. Convers. Manage., 2010, 51 (7), 1562.
  • [18] CRANGANU C., In-situ thermal stimulation of gas hydrates, J. Petrol. Sci. Eng., 2009, 65 (1–2), 76.
  • [19] MAKOGON Y.F., OMELCHENKO R.Y., Commercial gas production from Messoyakha deposit in hydrate conditions, J. Nat. Gas Sci. Eng., 2013, 11 (1), 1.
  • [20] MCGRAIL B.P., SCHAEF H.T., WHITE M.D., ZHU T., KULKAMI A.S., HUNTER R.B., PATIL S.L., OWEN A.T., MARTIN P.F., Using Carbon Dioxide to Enhance Recovery of Methane from Gas Hydrate Reservoirs: Final Summary Report, PNNL-17035, Pacific Northwest National Laboratory, Springfield, USA, 2007.
  • [21] BAI Y.H., LI Q.P., LI X.F., DU Y., The simulation of nature gas production from ocean gas hydrate reservoir by depressurization, Sci. China Ser. E – Tech. Sci., 2008, 51 (8), 1272.
  • [22] TEGZE G., GRÁNÁY L., KVAMME B., Phase field modeling of CH4 hydrate conversion into CO2 hydrate in the presence of liquid CO2, Phys. Chem. Chem. Phys., 2007, 9 (24), 3104.
  • [23] QANBARI F., POOLADI-DARVISH M., TABATABAIE S.H., GERAMI S., CO2 disposal as hydrate in ocean sediments, J. Nat. Gas Sci. Eng., 2012, 8, 139.
  • [24] LEE S.-Y., HOLDER G.H., Methane hydrates potential as a future energy source, Fuel Process. Technol., 2001, 71 (1–3), 181.
  • [25] MARUYAMA S., DEGUCHI K., CHISAKI M., OKAJIMA J., KOMIYA A., SHIRAKASHI R., Proposal for a low CO2 emission power generation system utilizing oceanic methane hydrate, Energy, 2012, 47 (1), 340.
  • [26] U.S. and Japan Complete Successful Field Trial of Methane Hydrate Production Technologies, National Energy Technology Laboratory, U.S. Department of Energy, Publications News Release, 2012, http://www.netl.doe.gov/publications/press/2012/120502_us_and_japan.html [2013-11-11].
  • [27] KANG Q., TSIMPANOGIANNIS I.N., ZHANG D., LICHTNER P.C., Numerical modeling of pore-scale phenomena during CO2 sequestration in oceanic sediments, Fuel Process. Technol., 2005, 86 (14–15), 1647. Hazards of uncontrolled methane release 111
  • [28] TAJIMA H., YAMASAKI A., KIYONO F., Process design of a new injection method of liquid CO2 at the intermediate depths in the ocean using a static mixer, Fuel Process. Technol., 2005, 86 (14–15), 1667.
  • [29] ROCHELLE C.A., CAMPS A.P., LONG D., MILODOWSKI A., BATEMAN K., GUNN D., JACKSON P., LOVELL M.A., REES J., Can CO2 hydrate assist in the underground storage of carbon dioxide?, [in:] Sediment-hosted gas hydrates: new insights on natural and synthetic systems, Geological Society of London, Special Publications Geological Society, London, UK, 2009, 319, 171–183.
  • [30] World Energy Assessment: Energy and the Challenge of Sustainability, J. Ptasznik (Ed.), United Nations Development Programme, Bureau for Development Policy, New York 2000.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b4a42455-8607-46ea-bb3f-18164a3ea51a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.