PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adsorpcja wybranych barwników z roztworów wodnych na nanoporowatych materiałach węglowych otrzymanych z prekursorów polimerowych

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Adsorption of dyes from aqueous solutions on nanoporous carbon materials obtained from polymeric precursors
Języki publikacji
PL
Abstrakty
PL
Badano adsorpcję trzech wybranych barwników organicznych (oranż II, oranż metylowy i błękit metylenowy) z roztworów wodnych na trzech materiałach węglowych. Pierwszym był mikroporowaty węgiel aktywny otrzymany z żywicy styrenowo-dwuwinylobenzenowej (AC-SDVB), drugim – uporządkowany węgiel mezoporowaty otrzymany z żywicy fenolowo-formaldehydowej (OMC-PF), a trzecim – handlowy mikro-mezoporowaty węgiel aktywnym firmy Chemviron Carbon (AC-F400). W warunkach laboratoryjnych wyznaczono doświadczalne izotermy adsorpcji tych barwników na węglach aktywnych w temperaturze 25C. Otrzymane dane doświadczalne opisano za pomocą znanych równań izoterm adsorpcji – Langmuira, Freundlicha oraz Langmuira-Freundlicha. Na podstawie wartości współczynnika korelacji (R2) stwierdzono, że najlepiej dane doświadczalne opisywało równanie izotermy Langmuira. Na podstawie otrzymanych izoterm adsorpcji wyznaczono maksymalne wartości adsorpcji poszczególnych barwników na badanych materiałach węglowych. Największą wartość adsorpcji uzyskano na węglu AC-SDVB – 625 mg/g (w przypadku oranżu II) oraz około 500 mg/g (w przypadku oranżu metylowego i błękitu metylenowego). Wartości te były około pięciokrotnie większe od maksymalnych adsorpcji poszczególnych barwników na węglach OMC-PF i AC-F400 (węgle te charakteryzowały sie maksymalną wartością adsorpcji każdego barwnika wynoszącą około 100 mg/g). Różnica w skuteczności adsorpcji barwników na badanych węglach była efektem znacznie lepiej rozwiniętej struktury porowatej węgla AC-SDVB, w porównaniu z pozostałymi węglami. Powierzchnia właściwa węgla AC-SDVB wynosiła 2480 m2/g, węgla OMC-PF – 660 m2/g, a węgla AC-F400 – 1260 m2/g. Ponadto wyznaczono wartości standardowych liczb charakteryzujących węgle aktywne – liczbę metylenową i liczbę jodową. Największą wartość zarówno liczby metylenowej (30 cm3), jak i liczby jodowej (1900 mg/g) otrzymano w przypadku węgla AC-SDVB. Badania wykazały, że niektóre porowate materiały węglowe otrzymane z polimerów, charakteryzujące się bardzo dobrymi parametrami struktury porowatej, wyjątkowo dobrze nadają się do adsorpcji barwników z roztworów wodnych.
EN
Adsorption of orange II, methyl orange and methylene blue from aqueous solutions on three carbon materials was studied. The first material for studies was the microporous activated carbon obtained from sulfonated styrene- divinylbenzene resin (AC-SDVB), the second – ordered mesoporous carbon obtained from phenol-formaldehyde resin (OMC-PF) and the third – commercial micro-mesoporous activated carbon from Chemviron Carbon (AC-F400). Adsorption isotherms of the above-mentioned dyes on the carbon materials were studied under laboratory conditions at 25 C. The experimental data was described using the well-known Langmuir, Freundlich and Langmuir-Freundlich adsorption isotherm equations. On the basis of the correlation coefficient (R2) value, it was demonstrated that the Langmuir equation best described this data. The maximum adsorbed amounts for the three dyes were determined. The highest value was obtained for AC-SDVB: 625 mg/g for orange II and about 500 mg/g for methyl orange and methylene blue. These values were approximately five times higher than the maximum adsorption values for individual dyes on OMC-PF and AC-F400 (maximum adsorption values were about 100 mg/g). The difference in the effectiveness of dye adsorption on the carbon materials tested was the result of a much more developed porous structure of carbon AC-SDVB, compared to other two carbons. The specific surface area of AC-SDVB was 2 480 m2/g, 660 m2/g – for OMC-PF and 1 260 m2/g – for AC-F400. In addition, the values of standard characteristic numbers for activated carbons, methylene number and iodine number, were also evaluated. The highest value of both the methylene number, equal to 30 cm3, and the iodine number of 1 900 mg/g were obtained for AC-SDVB. In conclusion, some of the porous carbon materials obtained from polymers, characterized by excellent structural parameters, are particularly efficient in adsorption of dyes from aqueous solutions.
Czasopismo
Rocznik
Strony
3--10
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
autor
  • Wojskowa Akademia Techniczna, Wydział Nowych Technologii i Chemii, Zakład Chemii, ul. generała Sylwestra Kaliskiego 2, 00-908 Warszawa
autor
  • Wojskowa Akademia Techniczna, Wydział Nowych Technologii i Chemii, Zakład Chemii, ul. generała Sylwestra Kaliskiego 2, 00-908 Warszawa
Bibliografia
  • 1. E. GHASEMIAN, Z. PALIZBAN: Comparisons of azodye adsorptions onto activated carbon and silicon carbide nanoparticles loaded on activated carbon. International Journal of Environment Science and Technology 2016, Vol. 13, pp. 501–512.
  • 2. N. S. M. LOUIS, S. THOMAS: Activated carbon from tapioca leaves for treating dye waste water. Toxicology and Environmental Health Sciences 2013, Vol. 5, No. 3, pp. 131–137.
  • 3. T. AYSU, M. M. KUCUK: Removal of crystal violet and methylene blue from aqueous solutions by activated carbon prepared from Ferula orientalis. International Journal of Environment Science and Technology 2015, Vol. 12, pp. 2273–2284.
  • 4. O. ÜNER, Ü. GECGEL, Y. BAYRAK: Adsorption of methylene blue by an efficient activated carbon prepared from Citrullus lanatus rind: Kinetic, isotherm, thermodynamic, and mechanism analysis. Water, Air, Soil Pollution 2016, pp. 227–247.
  • 5. Ü. GECGEL, B. KOCABIYIK, O. ÜNER: Adsorptive removal of methylene blue from aqueous solution by the activated carbon obtained from the fruit of Catalpa bignonioides. Water, Air, Soil Pollution 2015, pp. 226–238.
  • 6. K. A. TAN, N. MORAD, J. Q. OOI: Phytoremediation of methylene blue and methyl orange using Eichhornia crassipes. International Journal of Environmental Science and Development 2016, Vol. 7, pp. 724–728.
  • 7. F. P. SEJIE, M. S. NADIYE-TABBIRUKA: Removal of methyl orange (MO) from water by adsorption onto modified local clay (kaolinite). Physical Chemistry 2016, Vol. 6, No. 2, pp. 39–48.
  • 8. T. GAN, J. SUN, Z. LIN, Y. LI: Highly sensitive determination of Orange II based on the dual amplified electrochemical signal of graphene and mesoporous TiO2. RSC Advances 2013, Vol. 5, pp. 2964–2970.
  • 9. D. CHAKRABORTTY, S. S. GUPTA: Removal of Orange II dye from aqueous solution by adsorption and photodegradation with visible light in presence of nitrogen doped titania nanocatalyst. Indian Journal of Chemical Technology 2015, Vol. 22, pp. 34–41.
  • 10. R. HAZZAAA, M. HUSSEIN: Adsorption of cationic dye from aqueous solution onto activated carbon prepared from olive stones. Environmental Technology & Innovation 2015, Vol. 4, pp. 36–51.
  • 11. J. CHOMA, M. CZUBASZEK, M. JARONIEC: Adsorpcja barwników z roztworów wodnych na węglach aktywnych. (Adsorption of dyes from aqueous solutions on active carbons). Ochrona Środowiska 2015, vol. 37, nr 3 ss. 3–14.
  • 12. C. HE, X. HU: Anionic dye adsorption on chemically modified ordered mesoporous carbons. Industrial & Engineering Chemistry Research 2011, Vol. 50, pp. 14070–14083.
  • 13. A. M. SILVESTRE-ALBERO, A. WAHBY, J. SILVESTREALBERO, F. RODRIGUEZ-REIONSO, W. BETZ: Carbon molecular sieves prepared from polymeric precursors: Porous structure and hydrogen adsorption properties. Industrial & Engineering Chemistry Research 2009, Vol. 48, pp. 7125–7131.
  • 14. G. HASEGAWA, K. KANAMORI, K. NAKANISHI, T. HANADA: Fabrication of activated carbons with well-defined macropores derived from sulfonated poly(divinylbenzene) networks. Carbon 2010, Vol. 48, pp. 1757–1766.
  • 15. M. INAGAKI, M. TOYODA, Y. SOREDA, S. TSUJIMURA, T. MORISHITA: Templated mesoporous carbons: Synthesis and applications. Carbon 2016, Vol. 107, pp. 448–473.
  • 16. J. GÓRKA, M. JARONIEC: Hierarchically porous phenolic resin-based carbons obtained by block copolymer-colloidal silica templating and post-synthesis. Carbon 2011, Vol. 49, pp. 154–160.
  • 17. A. QAJAR, M. PEER, M. R. ANDALIBI, R. RAJAGOPALOAN, H. C. FOLEY: Enhanced ammonia adsorption on functionalized nanoporous carbons. Microporous and Mesoporous Materials 2015, Vol. 218, pp. 15–23.
  • 18. J. LI, D. H. L. NG, P. SONG, C. KONG, Y. SONG, P. YANG: Preparation and characterization of high-surface area activated carbon fibers from silkworm cocoon waste for congo red adsorption. Biomass and Bioenergy 2015, Vol. 75, pp. 189–200.
  • 19. Y. XUN, Z. SHU-PING, X. WEI, C. HONG-YOU, D. XIAODONG, L. XIN-MEI, Y. ZI-FENG: Aqueous dye adsorption on ordered mesoporous carbons. Journal of Colloid and Interface Science 2007, Vol. 310, pp. 83–89.
  • 20. Y. KIM, J. BAE, H. PARK, J.-K. SUH, Y.-W. YOU, H. CHOI: Adsorption dynamics of methyl violet on to granulated mesoporous carbon. Facile synthesis and adsorption kinetics. Water Research 2016, Vol. 101, pp. 187–194.
  • 21. Y. ZHAI, Y. DOU, X. LIU, S. S. PARK, C.-S. HA, D. ZHAO: Soft-template synthesis of ordered mesoporous carbon/nanoparticle nickel composites with a high surface area. Carbon 2011, Vol. 49, pp. 545–555.
  • 22. E. YU, J. LI, M. RAHMAN, D. M. DRYDEN, R. VIDU, P. STROEVE: Template-based syntheses for shape controlled nanostructures. Advances in Colloid and Interface Science 2016, Vol. 234, pp. 51–79.
  • 23. T. J. LEVARIO, M. DAI, M. YUAN, B. D. VOGT, D. R. NIELSEN: Rapid adsorption of alcohol biofuels by high surface area mesoporous carbons. Microporous and Mesoporous Materials 2012, Vol. 148, No. 1, pp. 107–114.
  • 24. B. BABIĆ, M. KOKUNESOSKI, M. MILJKOVIĆ, B. MATOVIĆ, J. GULICOVSKI, M. STOJMENOVIĆ, D. BUCEVAC: New mesoporous carbon materials synthesized by a templating procedure. Ceramics International 2013, Vol. 39, pp. 4035–4043.
  • 25. G. J. A. A. SOLER-ILLIA, O. AZZARONI: Multifunctional hybrids by combining ordered mesoporous materials and macromolecular building blocks. Critical review. RSC Advances 2011, Vol. 40, No. 2, pp. 1107–1150.
  • 26. L. CHUENCHOM, R. KRAEHNERT, B. M. SMARSLY: Recent progress in self-templating of porous carbon materials. Review. RSC Advances 2012, Vol. 8, pp. 10801–10812.
  • 27. W. LIBBRECHT, A. VERBERCKMOES, J. W. THYBAUT, P. V. D. VOORT, J. D. CLERCQ: Soft templated mesoporous carbons: Tuning the porosity for the adsorption of large organic pollutants. Carbon 2017, Vol. 116, pp. 528–546.
  • 28. Y. XIA, Z. YANG, R. MOKAYA: Templated nanoscale porous carbons. Review. RSC Advances 2010, Vol. 2, pp. 639–659.
  • 29. S.-M. ALATALO, E. MAKILA, E. REPO, M. HEINONEN, J. SALONEN, E. KUKK, M. SILLANPAA, M.-M. TITIRICI: Meso- and microporous soft templated hydrothermal carbons for dye removal from water. RSC Advances 2016, Vol. 18, pp. 1137–1146.
  • 30. Y. LI, B. YUAN, J. FU, S. DENG, X. LU: Adsorption of alkaloids on ordered mesoporous carbon. Journal of Colloid and Interface Science 2013, Vol. 408, pp. 181–190.
  • 31. F. LIU, Z. GUO, H. LING, Z. HUANG, D. TANG: Effect of pore structure on the adsorption of aqueous dyes to ordered mesoporous carbons. Microporous and Mesoporous Materials 2016, Vol. 227, pp. 104–111.
  • 32. Y. LIU, G. ZENG, L. TANG, Y. CAI, Y. PANG, Y. ZHANG, G. YANG, Y. ZHOU, X. HE, Y. HE: Highly effective adsorption of cationic and anionic dyes on magnetic Fe/Ni nanoparticles doped bimodal mesoporous carbon: Journal of Colloid and Interface Science 2016, Vol. 448, pp. 451–459.
  • 33. S. O. AKPOTU, B. MOODLY: Synthesis and characterization of citric acid grafted MCM-41 and its adsorption of cationic dyes. Journal of Environmental Chemical Engineering 2016, Vol. 4, pp. 4503–4513.
  • 34. C. HE·X. HU: Functionalized ordered mesoporous carbon for the adsorption of reactive dyes. Adsorption 2012, Vol. 18, pp. 337–348.
  • 35. N. BOKE, Z. G. GODOHGWANA, L. F. PETRIK: Synthesis of an ordered mesoporous carbon with graphitic characteristics and its application for dye adsorption. Journal of Porous Materials 2013, Vol. 20, pp. 1153–1161.
  • 36. X. PENG, X. HU, D. FU, F. L.Y. LAM: Adsorption removal of acid black 1 from aqueous solution using ordered mesoporous carbon. Applied Surface Science 2014, Vol. 294, pp. 71–80.
  • 37. M. CZUBASZEK, J. CHOMA: Badania kinetyczne adsorpcji wybranych barwników z roztworów wodnych na nanoporowatych węglach aktywnych otrzymanych z prekursorów polimerowych. (Kinetic studies of selected dye adsorption from aqueous solution on nanoporous carbons obtained from polymeric precursors). Ochrona Środowiska 2016, vol. 38, nr 4, ss. 3–12.
  • 38. J. CHOMA, K. STACHURSKA, M. MARSZEWSKI, M. JARONIEC: Equilibrium isotherms and isosteric heat for CO2 adsorption on nanoporous carbons from polymers. Adsorption 2016, Vol. 22, pp. 581–588.
  • 39. J. CHOMA, K. STACHURSKA, Ł. OSUCHOWSKI, A. DZIURA, M. JARONIEC: Adsorpcja dwutlenku węgla na węglach aktywnych otrzymanych z prekursorów polimerowych. (Carbon dioxide adsorption on activated carbons obtained from polymeric precursors). Ochrona Środowiska 2015, vol. 37, nr 4, ss. 1–6.
  • 40. A. ASFARAM, M. GHAEDI, S. HAJATIB, A. GOUDARZIC: Ternary dye adsorption onto MnO2 nanoparticle-loaded activated carbon: Derivative spectrophotometry and modeling. RSC Advances 2015, Vol. 5, pp. 72300–72320.
  • 41. H. I. CHIENG, N. PRIYANTHA, L. B. L. LIM: Effective adsorption of toxic brilliant green from aqueous solution using peat of Brunei Darussalam: Isotherms, thermodynamics, kinetics and regeneration studies. RSC Advances 2015, Vol. 5, No. 44, pp. 34603–34615.
  • 42. B. ACEVEDO, C. BARRIOCANAL: Simultaneous adsorption of Cd2+ and reactive dye on mesoporous nanocarbons. RSC Advances 2015, Vol. 5, No. 115, pp. 95247–95255.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b4a1e5c3-bdd5-404e-9176-5e156858b67d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.