PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the monotonicity of the relaxation spectrum of fractional Maxwell model of viscoelastic materials

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article focuses on the relaxation spectrum of fractional Maxwell model, which is a generalization of classic viscoelastic Maxwell model to non-integer order derivatives. The analytical formula for the spectrum of relaxation frequencies is derived. Theoretical analysis of the relaxation spectrum monotonicity is conducted by using simple analytical methods and illustrated by means of numerical examples. The necessary and sufficient conditions for the existence and uniqueness of the maximum of relaxation spectrum are stated and proved. The analytical formulas for minimum and maximum of the relaxation spectrum are derived. Also, a few useful properties concerning the relaxation spectrum monotonicity and concavity are given in the mathematical form of simple inequalities expressed directly in terms of the fractional Maxwell model parameters, which can be used to simplify the calculations and analysis.
Twórcy
  • Department of Technology Fundamentals, University of Life Sciences in Lublin, Poland
Bibliografia
  • 1. Alzer H., Berg Ch. 2001. Some classes of completely monotonic functions. Annales Academiæ Scientiarum Fennicæ, Mathematica, Vol. 27, 445-460.
  • 2. Biddlestone F.,Goodwin A. A., Hay J. N., CMouledous G. A. 1991. The relaxation spectrum and physical ageing of polyetherimide. Polymer, Vol. 32, No. 17, 3119-3125.
  • 3. Cai W., Chen W., Xu W. 2016. Characterizing the creep of viscoelastic materials by fractal derivative models. International Journal of Non-Linear Mechanics, Vol. 87, 58-63.
  • 4. Christensen R. M. 2013. Theory of Viscoelasticity. Dover Publications, Mineola, New York.
  • 5. Gorenflo R., Kilbas A. A., Mainardi F., Rogosin S. V. 2014. Mittag-Leffler Functions, Related Topics and Applications. Theory and Applications. Springer: Heidelberg, New York, London.
  • 6. Gorenflo R., Mainardi F. 1997. Fractional Calculus: Integral and Differential Equations of Fractional Order. A. Carpinteri and F. Mainardi (Eds): Fractals and Fractional Calculus in Continuum Mechanics, Springer Verlag, Wien and New York 1997, pp. 223- 276.
  • 7. Hernández-Jiménez A., Hernández-Santiago J., Macias-García A., Sánchez-González J., 2002. Relaxation modulus in PMMA and PTFE fitting by fractional Maxwell model. Polymer Testing, Vol. 21, 325–331.
  • 8. Kaczorek T., Rogowski K. 2014. Fractional Linear Systems and Electrical Circuits. Printing House of Bialystok University of Technology, Białystok.
  • 9. Malkin A.Ya. 2006. The use of a continuous relaxation spectrum for describing the viscoelastic properties of polymers. Polymer Science Series A, Vol. 48, No. 1, 39-45.
  • 10. Malkin A. Ya., Masalova I. 2001. From dynamic modulus via different relaxation spectra to relaxation and creep functions. Rheol. Acta, Vol. 40, 261-271.
  • 11. Matviykiv O. 2015. Mesoscale Modeling of Complex Microfluidic Flows. ECONTECHMOD, Vol. 4, No. 1, 77-85.
  • 12. Miller K. S., Samko S. G. 2001. Completely monotonic functions. Integral Transform. Spec. Funct. Vol. 12, No. 4, 389-402.
  • 13. Owens R. G., Phillips T. N. 2002. Computational Rheology. Imperial College Press, London.
  • 14. Podlubny I. 1999. Fractional Differential Equations. Academic Press, London.
  • 15. Pollard H. 1948. The completely monotonic character of the Mittag-Leffler function Ea(-x). Bull. Amer. Math. Soc., Vol. 54, 1115-1116.
  • 16. Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P. 2007. The Art of Scientific Computing (Section 5.6 Quadratic and Cubic Equations in Numerical Recipes), Cambridge University Press, New York.
  • 17. Radovskiy B., Teltayev B. 2017. Viscoelastic Properties of Asphalts Based on Penetration and Softening Point. Springer, Cham, Switzerland.
  • 18. Schiessel H., Metzler R., Blumen A., Nonnejunacher T. F. 1995. Generalized viscoelastic models: their fractional equations with solutions. J. Phys. A: Math. Gen. Vol. 28, 6567-6584.
  • 19. Schneider W. R. 1996. Completely monotone generalized Mittag-Leffler functions. Expo. Math. Vol. 14, 3-16.
  • 20. Shmyh R. 2017. Mathematical simulation of the stressed-deformed condition of reinforced concrete beams in simultaneous influence of aggressive environment and loading. ECONTECHMOD, Vol. 6. No. 3, 39-44.
  • 21. Stankiewicz A. 2010. On the existence and uniqueness of the relaxation spectrum of viscoelastic materials. Part I: The main theorem. TEKA Commission of Motorization and Power Industry in Agriculture, Vol. 10, 379-387.
  • 22. Stankiewicz A. 2010. On the existence and uniqueness of the relaxation spectrum of viscoelastic materials. Part II: Other existence conditions. TEKA Commission of Motorization and Power Industry in Agriculture, Vol. 10, 388-395.
  • 23. Stankiewicz A. 2013. Selected methods and algorithms for the identification of models used in the rheology of biological materials. Tow. Wyd. Nauk. Libropolis, Lublin.
  • 24. Stankiewicz A. 2018. Fractional Maxwell model of viscoelastic biological materials. Proc. Contemporary Research Trends in Agricultural Engineering, BIO Web Conf. Vol. 10, 2018, Article No. 02032, Pages: 8, DOI: https://doi.org/10.1051/bioconf/20181002032.
  • 25. Starek A., Kusińska E. 2016. The variability of mechanical properties of the kohlrabi stalk parenchyma. ECONTECHMOD, Vol. 5. No. 3, 9-18.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b4a17ec7-7d69-4368-a1cd-629974b15a60
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.