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Abstract. This article focuses on the relaxation spectrum
of fractional Maxwell model, which is a generalization of
classic viscoelastic Maxwell model to non-integer order
derivatives. The analytical formula for the spectrum of
relaxation frequencies is derived. Theoretical analysis of
the relaxation spectrum monotonicity is conducted by
using simple analytical methods and illustrated by means
of numerical examples. The necessary and sufficient
conditions for the existence and uniqueness of the
maximum of relaxation spectrum are stated and proved.
The analytical formulas for minimum and maximum of
the relaxation spectrum are derived. Also, a few useful
properties  concerning  the spectrum
monotonicity and concavity are given in the mathematical
form of simple inequalities expressed directly in terms of
the fractional Maxwell model parameters, which can be
used to simplify the calculations and analysis.
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INTRODUCTION
Rheology is concerned with time-dependent
deformation of solids and fluids [4,13]. For over five
decades classical exponential behavior models such as
Maxwell, Kelvin-Voight and Zener models have been
used for mathematical modelling stress relaxation and
creep processes [4,13,23]. For these models the
relationship between the stress and deformation of the
material is approximated though an ordinary differential
[4,11,13] or integral [4,13,20] equations.

By replacing the springs and dashpots of the classical
with the Scott-Blair fractional
elements, models, including the
fractional Maxwell, fractional Voigt and fractional Kelvin
models, have been proposed [3,7,18]. The fractional
Maxwell model is, perhaps, the most representative

viscoelastic models

several fractional

example of such models. To this end, fractional
rheological models have proven to be a concise and
elegant framework for predicting the response of complex
viscoelastic materials using a small number of parameters
[7,17,18,24]. In this paper fractional Maxwell model is
considered, which relates the stress to the strain in the
material by means of using differential fractional equation
[7,18,23] and admit the closed form of analytical solution
in terms of the known Mittag-Leftler function [5].

The mechanical properties of linear viscoelastic
materials spectrum
[2,4,9,10,17,23]. From the relaxation spectrum other
material functions such as the relaxation modulus or the
creep compliance can be calculated without difficulty, and
next both the constant and time-variable bulk or shear
modulus or Poisson’s ratio can be determined. Thus, the

are characterized by relaxation

spectrum is vital not only for constitutive models but also
for the insight into the properties of a viscoelastic material
[9,10,23].

The spectrum is the density of distribution of
relaxation modulus. The maximum of the spectrum
corresponds to the concentration of relaxation processes
[2,17]. Thus, the estimation of the maximum and, in
general, the analysis of the spectrum monotonicity is
basic for detailed knowledge of mechanical material [13].

The aim of the paper is to develop a concise analytical
formula describing the relaxation spectrum. To examine
the relaxation spectrum monotonicity and, in particular,
the maximum of the spectrum is also a basic concern.

FRACTIONAL MAXWELL MODEL

The elementary fractional Scott-Blair model [7] is
described by the fractional differential equation:

d%e(t)

—_ a
o(t) =ET o

(1
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where: o(t) and &£(t) denotes the stress and strain,
respectively, E and 7 are the elastic modulus and
relaxation time, @ is non-integer positive order of
fractional derivative of the strain e(t). Here, d%/dt* =
D{ means the fractional derivative operator in the sense
of Caputo fractional derivative of a function f(x) of non-
integer order a with respect to variable t and with the
starting point at t = 0, which is defined by [8, 14]:

dTl

[ - m et 2 p e,

datn

1
rn—-a)

Def() =

where: n—1<a<n and T'(n) is Euler’s gamma
function [8, 14]. The fractional Scott Blair model is an
intermediate model between ideal spring o(t) = Ee(t)

4O ¢ ideal fluids
dt

represented by means of an ideal dashpot of viscosity 7.

and the Newton’s model a(t) =17

To illustrate the structure of a fractional model, a
fractional element must be introduced [3] — see Fig. la.
Assuming unit-step strain &(t), the uniaxial stress
response of a fractional element (1), i.e. the time-
dependent relaxation modulus G (t) is given by [7, 18]:

GO = r(1E—a) (5)_(1.

Thus, the elementary fractional element is uniquely
described by three parameters (E, T, a), as shown in Fig. la.
The classic Maxwell model is a viscoelastic body that
stores energy like a linearized elastic spring and dissipates
energy like a classical fluid dashpot. Precisely, the classic
viscoelastic Maxwell model is the arrangement of ideal
spring in series with a dashpot (see Fig. 1b), described by

the first order differential equation [4, 23]:

do(t)
dt

de(t)
dat ’

E —
+;O’(t) =F

which for unit-step strain e(t) has exponential type

response G(t) = FE e~/ T, with the relaxation time
T=n/E.

o o
o
E (Ep T, “)
(E, T, a)
n (Ez: T, ﬁ)
o
o o
a b c

Fig. 1. Elementary fractional element (a) followed by the
Maxwell model (b) and the fractional Maxwell model (c)
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Connecting in series, by analogy to classic Maxwell
model, two elementary fractional Scott-Blair elements
(E1,71,a) and (E,, 75, B) — see Fig. 1c — we obtain
fractional Maxwell model described by the fractional
differential equation [7, 18, 24]:

a-p 4% Po®
T atae-F

a d%e(t)

+o(t) =Et e )

where the parameters of the FMM (Fractional Maxwell
Model) are of the components
parameters given by [24]:

functions model

1
_ [51(T1)“ a—p
Ex(12)B ’

1
E= [(Elrlrﬁ(rl)“(l-“)]aTB
[Ez(‘l'z)ﬁ]_u

The assumption a > f is taken, usually [7, 18]. For
details of the fractional Maxwell model (2) construction
see, e.g. [7]. For the unit-step strain the solution a(t) =
G(t) of FMM (2) is known for an arbitrary 1 > a = >
0 and given by the formula [7, 18]:

60=5() " Eusis () 0

where E, ;,(x) is the generalized Mittag-Leffler function
defined by series representation, convergent in the whole
z-complex plane [5, 14]:

xn

Eap(X) = Xii=o raniny 4)

RELAXATION SPECTRUM OF FMM

In the rheological literature it is commonly assumed
that the modulus G(t) has the following integral
representation [4,13,23]:

G(t) = [,” H(v)e "dv, (5)

where a non-negative relaxation spectrum H(v)
characterizes the distribution of relaxation frequencies
v = 0. Equation (5) yields a formal definition of a
relaxation spectrum [4, 21].

The spectrum representation of (5) guarantees
that the modulus G(t) is a completely monotone function,

i.e. that G (t) has derivatives of all orders and satisfies:

(-D"EG(0)2 0 forall t>0 and n=0,12,....



ON THE MONOTONICITY OF THE RELAXATION SPECTRUM

The above means, in particular, that G (t) is a monotonically
decreasing function. The completely monotonic character of
G(t) is a necessary condition for the relaxation spectrum
existence, however, it is not the sufficient one. The necessary
and sufficient conditions of the existence of relaxation
spectrum can be found in [21, 22].

In [19] Schneider proved that the generalized Mittag-
Leffler function E,,(—x), x =0 was completely
monotonic fora >0, b > 0 ifand only if 0 < a < 1 and
b > a. His proof is based on the application of the
corresponding probability measures and the Hankel
contour integration [19]. The same result was obtained by
Miller and Samko [12] as an immediate corollary of the
known Pollard’s result [15] concerning the complete
monotonicity of one parameter Mittag-Leffler function
E,(x) = Ea,l(x)-

Thus, the FMM relaxation modulus (3) is a completely
monotone function, since the product of two completely
monotone functions is completely monotone [1; Lemma
6]. The necessary condition of the existence of
nonnegative relaxation spectrum is satisfied, see [21;
Remark 5].

Let us define:

eap(t; ) = tP1E, ) (—AtY). (6)

In [6] for the case 0 < a <b <1, 1> 0, the following
integral representation is obtained using the complex
Bromwich formula to invert the Laplace transform of (6)
and bending the Bromwich path into the Hankel path:

eqp(t; D) = [, e Ky (r; Ddr, (7)

with the non-negative spectral function:

1 Asin[(b—a)n]+r2sin(bn) _4_p
m r2@422r%cos(am)+A?

Kop(r;2) = ®)

Note, that for a=a—f, b=1—L the above

inequalities 0 < a < b < 1 hold. Indeed:
O0<a—-p<1-p<1,

iff (throughout, iff=ifand only if) 0 < f < a < 1.
Putting in (6) a=a—LF, b=1—f and 1 =1 the
modulus (3) can be rewritten as:

G(t) = Eeq_pi_g (t 1),

~
T

whence, in view of the spectral representation (7) we
have:

o _ b
G(t) =E f) e Koo pa_p(r; Ddr,
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and now, using the juxtposition v = 5 we obtain:
G(t) =Et fome—vt a—B,l—B(UT; 1dv.

Taking into account definition (5) the spectrum of
FMM for the relaxation frequencies v > 0 is equal to:

Hw; a,B) = EtKy_p,1-p(vT; 1),
and in view of (8) turns out to be:

Hw;a,p) =
1 sin[(1-a)n] +(wD)* Psin[(1-p)r]

- a-1
T 7 (v1)2@=B) +2(v1) 2B cos[(a—B)m]+1 (UT) ’

In view of the above and taking into account that
sin[(1 — a)n] = sin(am), the following result can be
formulated.

Corollary 1. If 0 < < a <1, then the non-negative
integrable relaxation spectrum H(v; a, B) of the fractional
Maxwell model there exists and for v > 0 is given by the
formula:

Hw; a,B) =
1 sin(am) + () Psin(pn)
T 7 (v7)2(@=B) +2(v7) 2B cos[(a—B)m]+1

(o)t )

Denote for simplicity:

x = vr, (10)

A = sin(am), (11)

B = sin(Bm), (12)

C = cos[(a — B)m]. (13)

Under taken assumptions concerning « and S the two first
parameters are such that 0 < A < 1and 0 < B < 1, while
the sign of C depends on specific values of a and £5.

Let us define for real x the function:

Ax®1 ypx2a=p-1

¢0) = @Bt (14)

From (9), (10) and (14) we have:
Hw;a,pB) = ET%¢(X)| = ET%(!)(VT). (15)

Thus, in order to study the properties of the relaxation
spectrum H(v; a, B) it is enough to analyze the properties
of ¢(x) (14). Moreover, according to the value of «, the
analytical form of H(v; a, 8) (9) have different expressions
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and properties. Thus, it is important to distinguish two
different cases when «a is equal to one or not.

MONOTONICITY. CASE a < 1

Here we assume that 0 < f < a < 1. The analysis of
the spectrum asymptotic properties as v —» 0% and v —
oo, can be reduced to the study of the asymptotic
properties of ¢(x) as x » 0% and x — oo, respectively.
Sincea —1 < 0and a — f > 0 we have:

. i Ax%1 4Bx2a-B-1
— —_ =0
lim, o+ ¢ (x) xlfgﬁ x2(@=B) 12cx®=B+1 ’

regardless of the sign of the power (2a — § — 1), and:

0.

. . AxB~%+p
llmx—wo ¢(X) = il_tg x1=B42cx1-Qgxl—2a+B

Property 1. Let 0 <f <a <1. For the relaxation
spectrum H(v; a, B) (9) we have:

lim, o+ Hw; a, B) = oo,

(16)
and

lim,,o Hw;a,B) =0. 17

Thus, the spectrum of FMM is unbounded. In view of
[21; Theorem 1] the last is not a surprise, since it can be
proved that for the relaxation modulus (3) if @ < 1, then
G(t)> o as t-0% e, the that
lim,_+ G(t) < oo required to ensure the boundedness of
the relaxation spectrum is not satisfied here, see [21;
Theorem 1].

condition

10

st =05

Relaxation spectrum H(v) [Pas]

‘rl é é 7 8 9 10
Relaxation frequency v [S’l]

Fig. 2. Relaxation spectra of FMM for a« = 0.6, T =

100 [s], E = 1 [Pa]

Two typical curves of relaxation spectrum H(v; @, 8),
shown in Fig. 2 and 3, plots the spectrum H(v;a, )
versus frequency and represent the two characteristic
shapes — monotonically decreasing in Fig. 2 and having
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extrema in Fig. 3. The course of H(v; a,8) depends on
the values of a and 8 parameters. To study the influence
of the order parameters a and f on the spectrum, a more
detailed analysis of the component function ¢(x) (14),
which allows for a deeper insight into the spectrum
properties will be made. From (14) after straightforward
manipulations the derivative ¢'(x) can be obtained and
expressed as:

() = x@-2 23
¢'C0) = x50

(18)

the notation :—xq,’)(x) = ¢'(x) is used for brevity, the

numerator and denominator are given by:

@(x) = c3x3@ B 4, x2@ B 4 ¢ x*F 4 ¢, (19)

and
g =[x F+c] +1-c2, (20)
with the coefficients defined as follows:
¢ = (a—1)A, (21)
g =2(—-1DAC+ (2a—-p—-1)B, (22)
¢, =2(a —1)BC — (a — 2B + 1)A4, (23)
c3 = (8 —1B. (24)

It can be easily verified that for 0 < f < a < 1 both
¢y and c5 are negative, while the signs of ¢, and c¢;
depend on the values of a and . Note that since in view
of the definition (13) for 0 < S <a <1 we have
—1 < C < 1, the function g(x) (20) is positive definite.
Notice, that also the multiplicand x*~2 in (18) is positive
for all x > 0, thus both the sign of the derivative ¢'(x) as
well as their real roots are identical to those of ¢ (x).

0.7

Relaxation spectrum H(v) [Pas]

0 OES 1’ 1i5 2’ ZTS é 3?5 4
Relaxation frequency v [5'1]

Fig. 3. Relaxation spectra of FMM for @ = 0.8, 7 = 1 [s],

E =1[Pa]
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Let:
2a—-—-1<0. (25)

Since (25) means that « <§+%, the next inequality

results:

a<p+ % (26)
whence (a — B < g, which implies that C = cos[(a —
B)n] >0 and c¢; < 0. Since, under the assumption
0<f<a<1 we have a—28+1>0, also the
coefficient ¢, < 0. Thus in (25) case, all the coefficients
of the function ¢(x) (19) are negative, and in view of
(18), the derivative ¢p'(x) < 0 for all x > 0, whence, the
relaxation spectrum H(v;a,f) (15) is monotonically
decreasing function. From (18) in straightforward way we
have:

" _ (@-2)x"3p0)+x* %9 (x) _ 2x* 20 (x)g' (x)
¢"(x) = lg(0)]? g1 2 27)

where (20) gives:

9'(x) =2(a — Bx*Fx@F +c] >0,
for all x >0 when (25) holds, whence the second
summand of the right hand side of (27) is positive if
x > 0. From (19), taking into account (22)-(24), we have:
@' (x) = (@ — BIx* P71 (3c3x2@F) 4+ 2¢,x97F + ¢y),
thus the numerator:

P = (@ — 2)x*Pp(x) + x“729" (x),

of the first summand of ¢''(x) (27) in view of (19) and
(22)-(24) is given by:

P(x) = (a —2)x%73 [C3x3(a—ﬁ) + szz(a—g) + Clx"“ﬁ + Co]

+(a — B)x* 2x® P (3cax 2@ P + 2¢,x%7F + ¢y),
and can be expressed as:

PY(x) = x*3{(4a — 38 — 2)c3x3@ P

+ (Ba — 28 — 2)cx @A)
+Qa — B —2)c,x* P + (a — 2)cy ). (28)
The inequality (25) implies, in particular, that:

4a—2B—2<0,
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what, in turn, implies 4a —38 —2 < 0, thus the
coefficient (4a — 38 — 2)c; > 0, since c3 < 0. Next,
from (25) and (26) we have:

3a -2 -2<0,

what together with ¢, < 0 implies that (3a — 28 —
2)c, > 0. The positivity of two next coefficients (2a —
B —2)c; and (a — 2)c, are obvious and the positive
definiteness of ¥ (x) (28), and in consequence of ¢ (x)
(27) follows. Thus, the relaxation spectrum is convex in
(25) case and the following sufficient condition is stated.
Corollary 2. Let 0 < f < a < 1. If additionally 2a —
B — 1 < 0, then the relaxation spectrum H(v; a, 8) (9) is
monotonically decreasing convex function.

The next property results immediately from Corollary
2 and the above analysis by contradiction.
Corollary 3. Let 0<f <a<1. If the relaxation
spectrum H(v; a, ) (9) has local minimum and local
maximum, then:

2a—f—1>0. (29)

Note that from (29) it follows, in particular, that « > %

Let us introduce a new variable:

y=x%F>0, (30)
and define a new function:
o) =¢(x*F) = o). 31
From (19) we have:
o) = c3y® + ¢y + c1y + ¢, (32)

where the coefficients are defined by (21)-(24).

In order to state the necessary and sufficient
conditions for the existence of the relaxation spectrum
H(v; a,8) extrema, note that from the stationary point
condition follows that the spectrum has a maximum for
the relaxation frequency v = vy, > 0 iff the respective
VYmax = WmaxT)*F > 0 (compare (30) and (10)) is the
root of the cubic function @(y) (32). Similar property
holds for the minimum frequency v = v,;, > 0 and
corresponding Ypin = WminT)®F > 0, also being the
root of @(y). Thus, the analysis of the relaxation
spectrum extremal properties has been reduced to the
analysis of the properties and roots of the cubic function
(third order polynomial) @(y) (32) for y > 0.

In view of Property 1 (16), if the spectrum H(v; a, 8)
has maximum, a minimum exists too. Since @(0) = ¢, <
0 and lim,_,_., @(y) = oo, the cubic function @(y) has at
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least one real root on the negative real axis. Thus, from
the point of view of the course of the relaxation spectrum,
and in particular from the point of view of the existence
of its extrema, the existence or not of positive real roots of
the function @ (y) is basic. The necessary and sufficient
conditions of the existence of three real roots of third
order polynomials are known, as well as the analytical
methods for their computation. The algebraic solution of
the cubic equation can be derived in a number of different
ways. The Cardano’s method dated 1545 and Vieta’s
method published in 1615 are the most known. The two
methods are combined here and applied to the cubic
equation @ (y) = 0, which takes the standard form:

Y3+ eyl +ay+c =0. (33)
Applying the standard substitution:
y=z--= (34)

3c3’

and dividing equation (33) by c; we get so-called
depressed cubic equation with the zero quadratic term
coefficient:

z3+3pz+2q =0, (35)
where:
_ 3c3c1—[cz)?
3 =""Zar (36)
_ 2l aa o
T 27[c3]® 3[esl? 5 (37)

The number and types of roots are uniquely determined
by the determinant of the cubic equation defined as
follows:

D = q?% +ps. (38)
The depressed cubic equation (35) has three real roots iff
D < 0. If the determinant D = 0, then the equation (35),
and whence (33), has a multiple real root, all of its roots
are real. If p=g=0, ie, 3c3¢; —[c;]* =0 and
2[c, 13 — 9csc,¢q + 27[c3)%¢co = 0,
27[c3]%cy = [c,]?, the triple root is such that y; 3 =

what implies

C2 9c3Co

< 0 (for derivation the equation (39)

N
below may be used). Thus @(y) <0 for all y > 0. If
p3 = —q? # 0, then the equation (35) has two real roots,

one of them is double. It may be proved that simple
(single) root is negative. Even if the double root is
positive, the function @(y), and hence the derivative
¢'(x) (18) is negative on both sides of the root. The

A. STANKIEWICZ

relaxation spectrum decreases in the neighbourhood of
respective relaxation frequency, what due to the
asymptotic properties (16) and (17) results in the next
property.

Corollary 4. Let 0 < f < a < 1. If a and f are such that
the determinant D = 0, i.e.:

[2[C2]3 = 9c3¢,¢1 + 27[C3]2Co]2 = —4[3c3¢, — [C2]2]3s

where the coefficients c;, i = 0,1,2,3 are defined by (21)-
(24), then the relaxation spectrum H(v;a,B) (9) is
monotonically decreasing function for v > 0.

If D <0, then the cubic equation (35) roots are
obtained by Viéte’s [16] in
trigonometric functions (except when p = 0, but it is not
the case for D < 0), which in view of (34) for the original
third order equation (35) results in the three different real

formulas terms of

roots:

y, = —2rcos (g) - 30723, (39)

Yy, = 2r cos (7:3;9) - 36723, (40)

Y3 = 2r cos (”3;9) - 36723, 41)
where:

r=sgn(@yIpl,
and the angle 6 is such that:
cos() = Tq—3 (42)

Note, that D < 0, which in view of (38) implies p < 0,
and next:

0 <lql <Ipl{lpl,

guarantee that cos(6) given by (42) is such that:

lql

0< 9) = il = <1
< cos(9) = o o = ol < &

whence:
— LR
0< 8 =arccos (r3) =5
If g > 0, then r > 0 and the inequalities occur:

—2r cos (S) <0< 2rcos (?) < 2rcos (713;9)’
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whence we have:

Y1 <Y3 <Y

If ¢ < 0, then r < 0 and we have the inequalities:

—2r cos (2) >0 > 2rcos (":—9) > 2r cos (?),

whence the relation follows:
Y1 >Y3 > Y.

If ¢ = 0, then r > 0 and cos(8) = 0, whence 8 = g and

the three real roots are such that:

Y1 <Y¥Y3 <Y,

The basic property has been proved.
Theorem 1. Let 0 < f < a < 1. If ¢ and S are such that
the determinant D < 0, i.e.:

[2[C2]3 —9¢30,01 + 27[C3]250]2 < —4[3c3¢, — [C2]2]3’

where the coefficients c;, i = 0,1,2,3 are defined by (21)-
(24), then the relaxation spectrum H(v; @, 8) (9) has local

1
. 1 2 .
minimum V., =;(y3)“—ﬁ and local maximum vy,

given by:
1 1
Umax = ;(YZ)a_ﬁ if q=0,

1
1 — .
Umax = ;(}’1)““” if q<0.

Note that the necessary and sufficient condition for the

existence of local extrema is the inequality D < 0, which
itself implies that p < 0. Whence, by contradiction the
next property holds.
Corollary 5. Let 0 < f < @ < 1. If @ and f are such that
p = 0, which in view of (36) takes the form 3c3c; —
[c,]? = 0, then the relaxation spectrum H(v;a,B) (9)
does not have local minimum and local maximum, i.e. is
monotonically decreasing function.

The inequality p = 0 obviously implies D > 0, thus
the condition from Corollary 4 is a special case of that
stated above.

The useful necessary, but not sufficient, simple
condition for the existence of relaxation spectrum local
maximum and minimum also results:

3c36, — [e,]* <0, (44)

(43)
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which is satisfied, in particular, if ¢; > 0. Thus, checking
if (44) holds, avoids calculation of the determinant D in
the case, when it is not satisfied.

MONOTONICITY. CASE a =1

Up to now, the case where a # 1 has been considered.
In assuming that a =1, the spectrum
H(v; a, B) (9) is described by new analytical formula:

relaxation

H(v;B)=Hw;a=1,p) =
Erl (wo)1~Bsin[pn]
T 7 (w1)2=B —2(v1)1-B cos[pnr]+1"

(45)

Now, the asymptotic properties of the spectrum H; (v; )
are summarized in next property.

Property 2. Let 0 < f < a = 1. The relaxation spectrum
H, (v; B) (45) is such that:

lim,_ o+ Hi(v; ) =0,
and
lim,_, H(v; B) = 0.
By analogy to general model (15) the further analysis

of spectrum H,(v;B) (45) will use the multiplicative
form:

H(v;B) = ET_¢: ()| = Ev_s(v),

here the function ¢, (x), being an analogue of ¢(x) (14),
is given for x > 0 by:

Bx1-B
1 (%) = Sap i (46)
where now C = cos[fm]. From (46) in straightforward

way we have:

x~B[-x2(1-F)11]

x2(-B)2x1-Fc1]”

$1(x) = (1 —B)B[

The stationary point equation ¢;(x) = 0 has for x > 0
unique real solution x =1, and since ¢;1(x) >0 for
0<x<1 and ¢;(x) <0 for x > 1, the component
function ¢, (x) has maximum at x = 1. Thus, due to (10),
the relaxation spectrum has maximum at:

Umax = ;9

and the maximal value of the spectrum:
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1 sin(Bm)
Himax = Hy (Vpax; B) = Er——>"or

2m 1—-cos(Bm)’ (47)
While v,,,, depends only on the relaxation time of the
FMM, the maximum Hj ,,,4, is expressed in terms of all
model parameters, and in particular depend on the order
parameter . Based on the last expression in the right
hand side of (47) we have:

1 B

d H. =ET
apLmax — 2m cos(Bm)—1"

Hence, %Hl,max < 0 for any 0 < 8 < 1. Thus the bigger

is 8, the lower is Hy 14, (47) — see Fig. 4. The greater is
B, the more restricted is the spectrum and the higher its
maximum is. Thus, the order parameter f characterizes
the ‘height’ of the spectrum and its ‘width’.

- 2r =005
IS 0.1
= /| p=0.15
T 15t
£
=
B
g
L7
& 1r
=
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Fig. 4. Relaxation spectra of fractional Maxwell model
fora =1,E=1[Pa],t=1]s]

Theorem 2. Let 0 < f < a = 1. The relaxation spectrum
H,(v;B) (45) has unique maximum for the frequency
Vmax = 1/7 equal to Hy pqy (47).

FINAL REMARKS

Two different cases, when the derivative order a is
equal to one and when it is not, have been considered
separately because of the different mathematical formula
and properties of relaxation spectrum, especially its
boundedness and monotonicity. It has been proved that
the relaxation spectrum monotonicity character is
uniquely determined by the sign of the determinant D of
the cubic stationary point equation, which also uniquely
determines the number and types of its roots. The
analytical formulas for the local minimum and local
maximum of the spectrum have been given. Also, some
necessary conditions for the local extrema existence and
sufficient conditions for the monotonic convex decreasing
character of the spectrum have been derived in the form
of useful simple inequalities expressed directly in terms of
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the FMM parameters, which do not require the
determinant computation, and thus could be used to
simplify the analysis.

In the special case of order & = 1 it has been proved
that the greater the maximum density of spectrum is, the
lower the B parameter is. In this case the maximum
density of spectrum is independent on other FMM
parameters. The analysis of the influence of FMM
parameters on the spectrum maximum will be the subject
of future research. In many issues of the dynamical
properties the analysis of relaxation spectrum properties
plays an important role, thus the investigations are useful
wherever the determination of mechanical properties of
rheological materials [11,17,20,25] is important from a
cognitive and engineering point of view.
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