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Abstract. This article focuses on the relaxation spectrum 
of fractional Maxwell model, which is a generalization of 
classic viscoelastic Maxwell model to non-integer order 
derivatives. The analytical formula for the spectrum of 
relaxation frequencies is derived. Theoretical analysis of 
the relaxation spectrum monotonicity is conducted by 
using simple analytical methods and illustrated by means 
of numerical examples. The necessary and sufficient 
conditions for the existence and uniqueness of the 
maximum of relaxation spectrum are stated and proved. 
The analytical formulas for minimum and maximum of 
the relaxation spectrum are derived. Also, a few useful 
properties concerning the relaxation spectrum 
monotonicity and concavity are given in the mathematical 
form of simple inequalities expressed directly in terms of 
the fractional Maxwell model parameters, which can be 
used to simplify the calculations and analysis.  
Key words: fractional calculus, viscoelasticity, fractional 
Maxwell model, relaxation spectrum, maximum of 
relaxation spectrum.  
 
 

INTRODUCTION 
 

Rheology is concerned with time-dependent 
deformation of solids and fluids [4,13]. For over five 
decades classical exponential behavior models such as 
Maxwell, Kelvin-Voight and Zener models have been 
used for mathematical modelling stress relaxation and 
creep processes [4,13,23]. For these models the 
relationship between the stress and deformation of the 
material is approximated though an ordinary differential 
[4,11,13] or integral [4,13,20] equations.  

By replacing the springs and dashpots of the classical 
viscoelastic models with the Scott-Blair fractional 
elements, several fractional models, including the 
fractional Maxwell, fractional Voigt and fractional Kelvin 
models, have been proposed [3,7,18]. The fractional 
Maxwell model is, perhaps, the most representative 

example of such models. To this end, fractional 
rheological models have proven to be a concise and 
elegant framework for predicting the response of complex 
viscoelastic materials using a small number of parameters 
[7,17,18,24]. In this paper fractional Maxwell model is 
considered, which relates the stress to the strain in the 
material by means of using differential fractional equation 
[7,18,23] and admit the closed form of analytical solution 
in terms of the known Mittag-Leffler function [5].  

The mechanical properties of linear viscoelastic 
materials are characterized by relaxation spectrum 
[2,4,9,10,17,23]. From the relaxation spectrum other 
material functions such as the relaxation modulus or the 
creep compliance can be calculated without difficulty, and 
next both the constant and time-variable bulk or shear 
modulus or Poisson’s ratio can be determined. Thus, the 
spectrum is vital not only for constitutive models but also 
for the insight into the properties of a viscoelastic material 
[9,10,23]. 

The spectrum is the density of distribution of 
relaxation modulus. The maximum of the spectrum 
corresponds to the concentration of relaxation processes 
[2,17]. Thus, the estimation of the maximum and, in 
general, the analysis of the spectrum monotonicity is 
basic for detailed knowledge of mechanical material [13]. 

The aim of the paper is to develop a concise analytical 
formula describing the relaxation spectrum. To examine 
the relaxation spectrum monotonicity and, in particular, 
the maximum of the spectrum is also a basic concern. 

 
 

FRACTIONAL MAXWELL MODEL 
 

The elementary fractional Scott-Blair model [7] is 
described by the fractional differential equation:  

 

 𝜎𝜎(𝑡𝑡) = 𝐸𝐸𝜏𝜏𝛼𝛼 𝑑𝑑𝛼𝛼𝜀𝜀(𝑡𝑡)
𝑑𝑑𝑡𝑡𝛼𝛼 , (1) 
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2 A. STANKIEWICZ 
where: 𝜎𝜎(𝑡𝑡) and 𝜀𝜀(𝑡𝑡) denotes the stress and strain, 
respectively, 𝐸𝐸 and 𝜏𝜏 are the elastic modulus and 
relaxation time, 𝛼𝛼 is non-integer positive order of 
fractional derivative of the strain 𝜀𝜀(𝑡𝑡). Here, 𝑑𝑑𝛼𝛼 𝑑𝑑𝑡𝑡𝛼𝛼⁄ =
𝐷𝐷𝑡𝑡

𝛼𝛼  means the fractional derivative operator in the sense 
of Caputo fractional derivative of a function 𝑓𝑓(𝑥𝑥) of non-
integer order 𝛼𝛼 with respect to variable 𝑡𝑡 and with the 
starting point at 𝑡𝑡 = 0, which is defined by [8, 14]: 
 

 𝐷𝐷𝑡𝑡
𝛼𝛼𝑓𝑓(𝑡𝑡) = 1

Γ(𝑛𝑛−𝛼𝛼) ∫ (𝑡𝑡 − 1)𝑛𝑛−𝛼𝛼−1𝑡𝑡
0

𝑑𝑑𝑛𝑛

𝑑𝑑𝑡𝑡𝑛𝑛 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑, 

 
where: 𝑛𝑛 − 1 < 𝛼𝛼 < 𝑛𝑛 and Γ(𝑛𝑛) is Euler’s gamma 
function [8, 14]. The fractional Scott Blair model is an 
intermediate model between ideal spring 𝜎𝜎(𝑡𝑡) = 𝐸𝐸𝐸𝐸(𝑡𝑡) 

and the Newton’s model 𝜎𝜎(𝑡𝑡) = 𝜂𝜂 𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑  of ideal fluids 

represented by means of an ideal dashpot of viscosity 𝜂𝜂. 
To illustrate the structure of a fractional model, a 
fractional element must be introduced [3] – see Fig. 1a. 
Assuming unit-step strain 𝜀𝜀(𝑡𝑡), the uniaxial stress 
response of a fractional element (1), i.e. the time-
dependent relaxation modulus 𝐺𝐺(𝑡𝑡) is given by [7, 18]: 
 

 𝐺𝐺(𝑡𝑡) = 𝐸𝐸
𝛤𝛤(1−𝛼𝛼) (𝑡𝑡

𝜏𝜏)
−𝛼𝛼

. 

 
Thus, the elementary fractional element is uniquely 
described by three parameters (𝐸𝐸, 𝜏𝜏, 𝛼𝛼), as shown in Fig. 1a.  

The classic Maxwell model is a viscoelastic body that 
stores energy like a linearized elastic spring and dissipates 
energy like a classical fluid dashpot. Precisely, the classic 
viscoelastic Maxwell model is the arrangement of ideal 
spring in series with a dashpot (see Fig. 1b), described by 
the first order differential equation [4, 23]: 

 
 𝑑𝑑𝑑𝑑(𝑡𝑡)

𝑑𝑑𝑑𝑑 + 𝐸𝐸
𝜂𝜂 𝜎𝜎(𝑡𝑡) = 𝐸𝐸 𝑑𝑑𝑑𝑑(𝑡𝑡)

𝑑𝑑𝑑𝑑 , 

 
which for unit-step strain 𝜀𝜀(𝑡𝑡) has exponential type 
response 𝐺𝐺(𝑡𝑡) = 𝐸𝐸𝑒𝑒−𝑡𝑡 𝜏𝜏⁄ , with the relaxation time 
𝜏𝜏 = 𝜂𝜂 𝐸𝐸⁄ .  
 
 
 
 
 
 
 
 
 
 
Fig. 1. Elementary fractional element (a) followed by the 
Maxwell model (b) and the fractional Maxwell model (c) 

 

Connecting in series, by analogy to classic Maxwell 
model, two elementary fractional Scott-Blair elements 
(𝐸𝐸1, 𝜏𝜏1, 𝛼𝛼) and (𝐸𝐸2, 𝜏𝜏2, 𝛽𝛽) – see Fig. 1c – we obtain 
fractional Maxwell model described by the fractional 
differential equation [7, 18, 24]: 

 

 𝜏𝜏𝛼𝛼−𝛽𝛽 𝑑𝑑𝛼𝛼−𝛽𝛽𝜎𝜎(𝑡𝑡)
𝑑𝑑𝑡𝑡𝛼𝛼−𝛽𝛽 + 𝜎𝜎(𝑡𝑡) = 𝐸𝐸𝜏𝜏𝛼𝛼 𝑑𝑑𝛼𝛼𝜀𝜀(𝑡𝑡)

𝑑𝑑𝑡𝑡𝛼𝛼 , (2) 
 
where the parameters of the FMM (Fractional Maxwell 
Model) are functions of the model components 
parameters given by [24]:  
 

 𝜏𝜏 = [𝐸𝐸1(𝜏𝜏1)𝛼𝛼

𝐸𝐸2(𝜏𝜏2)𝛽𝛽]
1

𝛼𝛼−𝛽𝛽, 

 

 𝐸𝐸 = [(𝐸𝐸1𝜏𝜏1)−𝛽𝛽(𝜏𝜏1)𝛼𝛼(1−𝛼𝛼)

[𝐸𝐸2(𝜏𝜏2)𝛽𝛽]−𝛼𝛼 ]
1

𝛼𝛼−𝛽𝛽
. 

 
The assumption 𝛼𝛼 ≥ 𝛽𝛽 is taken, usually [7, 18]. For 

details of the fractional Maxwell model (2) construction 
see, e.g. [7]. For the unit-step strain the solution 𝜎𝜎(𝑡𝑡) =
𝐺𝐺(𝑡𝑡) of FMM (2) is known for an arbitrary 1 ≥ 𝛼𝛼 ≥ 𝛽𝛽 ≥
0 and given by the formula [7, 18]: 

 

 𝐺𝐺(𝑡𝑡) = 𝐸𝐸 (𝑡𝑡
𝜏𝜏)

−𝛽𝛽
𝐸𝐸𝛼𝛼−𝛽𝛽,1−𝛽𝛽 (− (𝑡𝑡

𝜏𝜏)
𝛼𝛼−𝛽𝛽

), (3) 

 
where 𝐸𝐸𝑎𝑎,𝑏𝑏(𝑥𝑥) is the generalized Mittag-Leffler function 
defined by series representation, convergent in the whole 
z-complex plane [5, 14]: 
 

 𝐸𝐸𝑎𝑎,𝑏𝑏(𝑥𝑥) = ∑ 𝑥𝑥𝑛𝑛

𝛤𝛤(𝑎𝑎𝑎𝑎+𝑏𝑏)
∞
𝑛𝑛=0 . (4) 

 
 

RELAXATION SPECTRUM OF FMM 
 
In the rheological literature it is commonly assumed 

that the modulus 𝐺𝐺(𝑡𝑡) has the following integral 
representation [4,13,23]: 

 
 𝐺𝐺(𝑡𝑡) = ∫ 𝐻𝐻(𝑣𝑣)𝑒𝑒−𝑣𝑣𝑣𝑣𝑑𝑑𝑑𝑑∞

0 , (5) 
 
where a non-negative relaxation spectrum 𝐻𝐻(𝑣𝑣) 
characterizes the distribution of relaxation frequencies 
𝑣𝑣 ≥ 0. Equation (5) yields a formal definition of a 
relaxation spectrum [4, 21].  

The spectrum representation of (5) guarantees 
that the modulus 𝐺𝐺(𝑡𝑡) is a completely monotone function, 
i.e. that 𝐺𝐺(𝑡𝑡) has derivatives of all orders and satisfies: 

 

 (−1)𝑛𝑛 𝑑𝑑𝑛𝑛

𝑑𝑑𝑡𝑡𝑛𝑛 𝐺𝐺(𝑡𝑡) ≥ 0   for all  𝑡𝑡 > 0   and  𝑛𝑛 = 0,1,2, … . 

b 

(𝐸𝐸1, 𝜏𝜏1, 𝛼𝛼) 

s

(𝐸𝐸2, 𝜏𝜏2, 𝛽𝛽) 

s
a 

(𝐸𝐸, 𝜏𝜏, 𝛼𝛼)

s

s

c 

𝐸𝐸

s 

h

s
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The above means, in particular, that 𝐺𝐺(𝑡𝑡) is a monotonically 
decreasing function. The completely monotonic character of 
𝐺𝐺(𝑡𝑡) is a necessary condition for the relaxation spectrum 
existence, however, it is not the sufficient one. The necessary 
and sufficient conditions of the existence of relaxation 
spectrum can be found in [21, 22].  

In [19] Schneider proved that the generalized Mittag-
Leffler function 𝐸𝐸𝑎𝑎,𝑏𝑏(−𝑥𝑥), 𝑥𝑥 ≥ 0 was completely 
monotonic for 𝑎𝑎 > 0, 𝑏𝑏 > 0 if and only if 0 < 𝑎𝑎 ≤ 1 and 
𝑏𝑏 > 𝑎𝑎. His proof is based on the application of the 
corresponding probability measures and the Hankel 
contour integration [19]. The same result was obtained by 
Miller and Samko [12] as an immediate corollary of the 
known Pollard’s result [15] concerning the complete 
monotonicity of one parameter Mittag-Leffler function 
𝐸𝐸𝑎𝑎(𝑥𝑥) = 𝐸𝐸𝑎𝑎,1(𝑥𝑥).  

Thus, the FMM relaxation modulus (3) is a completely 
monotone function, since the product of two completely 
monotone functions is completely monotone [1; Lemma 
6]. The necessary condition of the existence of 
nonnegative relaxation spectrum is satisfied, see [21; 
Remark 5].  

Let us define: 
 

 𝑒𝑒𝑎𝑎,𝑏𝑏(𝑡𝑡; 𝜆𝜆) = 𝑡𝑡𝑏𝑏−1𝐸𝐸𝑎𝑎,𝑏𝑏(−𝜆𝜆𝑡𝑡𝑎𝑎). (6) 
 
In [6] for the case 0 < 𝑎𝑎 ≤ 𝑏𝑏 < 1, 𝜆𝜆 > 0, the following 
integral representation is obtained using the complex 
Bromwich formula to invert the Laplace transform of (6) 
and bending the Bromwich path into the Hankel path:  
 
 𝑒𝑒𝑎𝑎,𝑏𝑏(𝑡𝑡; 𝜆𝜆) = ∫ 𝑒𝑒−𝑟𝑟𝑟𝑟𝐾𝐾𝑎𝑎,𝑏𝑏(𝑟𝑟; 𝜆𝜆)𝑑𝑑𝑑𝑑

∞
0 , (7) 

 
with the non-negative spectral function:  
 

 𝐾𝐾𝑎𝑎,𝑏𝑏(𝑟𝑟; 𝜆𝜆) =
1
𝜋𝜋
𝜆𝜆 𝑠𝑠𝑠𝑠𝑠𝑠[(𝑏𝑏−𝑎𝑎)𝜋𝜋]+𝑟𝑟𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠(𝑏𝑏𝑏𝑏)
𝑟𝑟2𝑎𝑎+2𝜆𝜆𝑟𝑟𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎𝑎𝑎)+𝜆𝜆2 𝑟𝑟𝑎𝑎−𝑏𝑏. (8) 

 
Note, that for 𝑎𝑎 = 𝛼𝛼 − 𝛽𝛽, 𝑏𝑏 = 1 − 𝛽𝛽 the above 
inequalities 0 < 𝑎𝑎 ≤ 𝑏𝑏 < 1 hold. Indeed:  
 
 0 < 𝛼𝛼 − 𝛽𝛽 ≤ 1 − 𝛽𝛽 < 1, 
 
iff (throughout, iff = if and only if) 0 < 𝛽𝛽 < 𝛼𝛼 ≤ 1.  

Putting in (6) 𝑎𝑎 = 𝛼𝛼 − 𝛽𝛽, 𝑏𝑏 = 1 − 𝛽𝛽 and 𝜆𝜆 = 1 the 
modulus (3) can be rewritten as:  

 

 𝐺𝐺(𝑡𝑡) = 𝐸𝐸𝑒𝑒𝛼𝛼−𝛽𝛽,1−𝛽𝛽 (
𝑡𝑡
𝜏𝜏 ; 1), 

 
whence, in view of the spectral representation (7) we 
have:  

 𝐺𝐺(𝑡𝑡) = 𝐸𝐸 ∫ 𝑒𝑒−𝑟𝑟
𝑡𝑡
𝜏𝜏𝐾𝐾𝛼𝛼−𝛽𝛽,1−𝛽𝛽(𝑟𝑟; 1)𝑑𝑑𝑑𝑑

∞
0 , 

and now, using the juxtposition 𝑣𝑣 = 𝑟𝑟
𝜏𝜏 we obtain: 

 
 𝐺𝐺(𝑡𝑡) = 𝐸𝐸𝐸𝐸 ∫ 𝑒𝑒−𝑣𝑣𝑣𝑣𝐾𝐾𝛼𝛼−𝛽𝛽,1−𝛽𝛽(𝑣𝑣𝑣𝑣; 1)𝑑𝑑𝑑𝑑

∞
0 . 

 
Taking into account definition (5) the spectrum of 

FMM for the relaxation frequencies 𝑣𝑣 > 0 is equal to:  
 

 𝐻𝐻(𝑣𝑣; 𝛼𝛼, 𝛽𝛽) = 𝐸𝐸𝐸𝐸𝐾𝐾𝛼𝛼−𝛽𝛽,1−𝛽𝛽(𝑣𝑣𝑣𝑣; 1), 
 
and in view of (8) turns out to be: 
 

𝐻𝐻(𝑣𝑣; 𝛼𝛼, 𝛽𝛽) =
𝐸𝐸𝐸𝐸 1

𝜋𝜋
𝑠𝑠𝑠𝑠𝑠𝑠[(1−𝛼𝛼)𝜋𝜋]+(𝑣𝑣𝑣𝑣)𝛼𝛼−𝛽𝛽𝑠𝑠𝑠𝑠𝑠𝑠[(1−𝛽𝛽)𝜋𝜋]

(𝑣𝑣𝑣𝑣)2(𝛼𝛼−𝛽𝛽)+2(𝑣𝑣𝑣𝑣)𝛼𝛼−𝛽𝛽 𝑐𝑐𝑐𝑐𝑐𝑐[(𝛼𝛼−𝛽𝛽)𝜋𝜋]+1 (𝑣𝑣𝑣𝑣)
𝛼𝛼−1. 

 
In view of the above and taking into account that 
𝑠𝑠𝑠𝑠𝑠𝑠[(1 − 𝛼𝛼)𝜋𝜋] = 𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼𝛼𝛼), the following result can be 
formulated.  
Corollary 1. If 0 < 𝛽𝛽 < 𝛼𝛼 ≤ 1, then the non-negative 
integrable relaxation spectrum 𝐻𝐻(𝑣𝑣; 𝛼𝛼, 𝛽𝛽) of the fractional 
Maxwell model there exists and for 𝑣𝑣 > 0 is given by the 
formula: 
 
 𝐻𝐻(𝑣𝑣; 𝛼𝛼, 𝛽𝛽) =
𝐸𝐸𝐸𝐸 1

𝜋𝜋
𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼𝛼𝛼)+(𝑣𝑣𝑣𝑣)𝛼𝛼−𝛽𝛽𝑠𝑠𝑠𝑠𝑠𝑠(𝛽𝛽𝛽𝛽)

(𝑣𝑣𝑣𝑣)2(𝛼𝛼−𝛽𝛽)+2(𝑣𝑣𝑣𝑣)𝛼𝛼−𝛽𝛽 𝑐𝑐𝑐𝑐𝑐𝑐[(𝛼𝛼−𝛽𝛽)𝜋𝜋]+1 (𝑣𝑣𝑣𝑣)
𝛼𝛼−1. (9) 

 
Denote for simplicity: 
 

 𝑥𝑥 = 𝑣𝑣𝑣𝑣, (10) 
 
 𝐴𝐴 = 𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼𝛼𝛼), (11) 
 
 𝐵𝐵 = 𝑠𝑠𝑠𝑠𝑠𝑠(𝛽𝛽𝛽𝛽), (12) 
 
 𝐶𝐶 = 𝑐𝑐𝑐𝑐𝑐𝑐[(𝛼𝛼 − 𝛽𝛽)𝜋𝜋]. (13) 
 
Under taken assumptions concerning 𝛼𝛼 and 𝛽𝛽 the two first 
parameters are such that 0 < 𝐴𝐴 ≤ 1 and 0 < 𝐵𝐵 ≤ 1, while 
the sign of 𝐶𝐶 depends on specific values of 𝛼𝛼 and 𝛽𝛽.  

Let us define for real 𝑥𝑥 the function: 
 

 𝜙𝜙(𝑥𝑥) = 𝐴𝐴𝑥𝑥𝛼𝛼−1 +𝐵𝐵𝐵𝐵2𝛼𝛼−𝛽𝛽−1

𝑥𝑥2(𝛼𝛼−𝛽𝛽)+2𝐶𝐶𝐶𝐶𝛼𝛼−𝛽𝛽+1. (14) 
 
From (9), (10) and (14) we have:  
 
 𝐻𝐻(𝑣𝑣; 𝛼𝛼, 𝛽𝛽) = 𝐸𝐸𝐸𝐸 1

𝜋𝜋 𝜙𝜙(𝑥𝑥)|𝑥𝑥=𝑣𝑣𝑣𝑣 = 𝐸𝐸𝐸𝐸 1
𝜋𝜋 𝜙𝜙(𝑣𝑣𝑣𝑣). (15) 

 
Thus, in order to study the properties of the relaxation 

spectrum 𝐻𝐻(𝑣𝑣; 𝛼𝛼, 𝛽𝛽) it is enough to analyze the properties 
of 𝜙𝜙(𝑥𝑥) (14). Moreover, according to the value of 𝛼𝛼, the 
analytical form of 𝐻𝐻(𝑣𝑣; 𝛼𝛼, 𝛽𝛽) (9) have different expressions 
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𝐷𝐷𝑡𝑡

𝛼𝛼  means the fractional derivative operator in the sense 
of Caputo fractional derivative of a function 𝑓𝑓(𝑥𝑥) of non-
integer order 𝛼𝛼 with respect to variable 𝑡𝑡 and with the 
starting point at 𝑡𝑡 = 0, which is defined by [8, 14]: 
 

 𝐷𝐷𝑡𝑡
𝛼𝛼𝑓𝑓(𝑡𝑡) = 1

Γ(𝑛𝑛−𝛼𝛼) ∫ (𝑡𝑡 − 1)𝑛𝑛−𝛼𝛼−1𝑡𝑡
0

𝑑𝑑𝑛𝑛

𝑑𝑑𝑡𝑡𝑛𝑛 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑, 

 
where: 𝑛𝑛 − 1 < 𝛼𝛼 < 𝑛𝑛 and Γ(𝑛𝑛) is Euler’s gamma 
function [8, 14]. The fractional Scott Blair model is an 
intermediate model between ideal spring 𝜎𝜎(𝑡𝑡) = 𝐸𝐸𝐸𝐸(𝑡𝑡) 

and the Newton’s model 𝜎𝜎(𝑡𝑡) = 𝜂𝜂 𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑  of ideal fluids 

represented by means of an ideal dashpot of viscosity 𝜂𝜂. 
To illustrate the structure of a fractional model, a 
fractional element must be introduced [3] – see Fig. 1a. 
Assuming unit-step strain 𝜀𝜀(𝑡𝑡), the uniaxial stress 
response of a fractional element (1), i.e. the time-
dependent relaxation modulus 𝐺𝐺(𝑡𝑡) is given by [7, 18]: 
 

 𝐺𝐺(𝑡𝑡) = 𝐸𝐸
𝛤𝛤(1−𝛼𝛼) (𝑡𝑡

𝜏𝜏)
−𝛼𝛼

. 

 
Thus, the elementary fractional element is uniquely 
described by three parameters (𝐸𝐸, 𝜏𝜏, 𝛼𝛼), as shown in Fig. 1a.  

The classic Maxwell model is a viscoelastic body that 
stores energy like a linearized elastic spring and dissipates 
energy like a classical fluid dashpot. Precisely, the classic 
viscoelastic Maxwell model is the arrangement of ideal 
spring in series with a dashpot (see Fig. 1b), described by 
the first order differential equation [4, 23]: 

 
 𝑑𝑑𝑑𝑑(𝑡𝑡)

𝑑𝑑𝑑𝑑 + 𝐸𝐸
𝜂𝜂 𝜎𝜎(𝑡𝑡) = 𝐸𝐸 𝑑𝑑𝑑𝑑(𝑡𝑡)

𝑑𝑑𝑑𝑑 , 

 
which for unit-step strain 𝜀𝜀(𝑡𝑡) has exponential type 
response 𝐺𝐺(𝑡𝑡) = 𝐸𝐸𝑒𝑒−𝑡𝑡 𝜏𝜏⁄ , with the relaxation time 
𝜏𝜏 = 𝜂𝜂 𝐸𝐸⁄ .  
 
 
 
 
 
 
 
 
 
 
Fig. 1. Elementary fractional element (a) followed by the 
Maxwell model (b) and the fractional Maxwell model (c) 

 

Connecting in series, by analogy to classic Maxwell 
model, two elementary fractional Scott-Blair elements 
(𝐸𝐸1, 𝜏𝜏1, 𝛼𝛼) and (𝐸𝐸2, 𝜏𝜏2, 𝛽𝛽) – see Fig. 1c – we obtain 
fractional Maxwell model described by the fractional 
differential equation [7, 18, 24]: 

 

 𝜏𝜏𝛼𝛼−𝛽𝛽 𝑑𝑑𝛼𝛼−𝛽𝛽𝜎𝜎(𝑡𝑡)
𝑑𝑑𝑡𝑡𝛼𝛼−𝛽𝛽 + 𝜎𝜎(𝑡𝑡) = 𝐸𝐸𝜏𝜏𝛼𝛼 𝑑𝑑𝛼𝛼𝜀𝜀(𝑡𝑡)

𝑑𝑑𝑡𝑡𝛼𝛼 , (2) 
 
where the parameters of the FMM (Fractional Maxwell 
Model) are functions of the model components 
parameters given by [24]:  
 

 𝜏𝜏 = [𝐸𝐸1(𝜏𝜏1)𝛼𝛼

𝐸𝐸2(𝜏𝜏2)𝛽𝛽]
1

𝛼𝛼−𝛽𝛽, 

 

 𝐸𝐸 = [(𝐸𝐸1𝜏𝜏1)−𝛽𝛽(𝜏𝜏1)𝛼𝛼(1−𝛼𝛼)

[𝐸𝐸2(𝜏𝜏2)𝛽𝛽]−𝛼𝛼 ]
1

𝛼𝛼−𝛽𝛽
. 

 
The assumption 𝛼𝛼 ≥ 𝛽𝛽 is taken, usually [7, 18]. For 

details of the fractional Maxwell model (2) construction 
see, e.g. [7]. For the unit-step strain the solution 𝜎𝜎(𝑡𝑡) =
𝐺𝐺(𝑡𝑡) of FMM (2) is known for an arbitrary 1 ≥ 𝛼𝛼 ≥ 𝛽𝛽 ≥
0 and given by the formula [7, 18]: 

 

 𝐺𝐺(𝑡𝑡) = 𝐸𝐸 (𝑡𝑡
𝜏𝜏)

−𝛽𝛽
𝐸𝐸𝛼𝛼−𝛽𝛽,1−𝛽𝛽 (− (𝑡𝑡

𝜏𝜏)
𝛼𝛼−𝛽𝛽

), (3) 

 
where 𝐸𝐸𝑎𝑎,𝑏𝑏(𝑥𝑥) is the generalized Mittag-Leffler function 
defined by series representation, convergent in the whole 
z-complex plane [5, 14]: 
 

 𝐸𝐸𝑎𝑎,𝑏𝑏(𝑥𝑥) = ∑ 𝑥𝑥𝑛𝑛

𝛤𝛤(𝑎𝑎𝑎𝑎+𝑏𝑏)
∞
𝑛𝑛=0 . (4) 

 
 

RELAXATION SPECTRUM OF FMM 
 
In the rheological literature it is commonly assumed 

that the modulus 𝐺𝐺(𝑡𝑡) has the following integral 
representation [4,13,23]: 

 
 𝐺𝐺(𝑡𝑡) = ∫ 𝐻𝐻(𝑣𝑣)𝑒𝑒−𝑣𝑣𝑣𝑣𝑑𝑑𝑑𝑑∞

0 , (5) 
 
where a non-negative relaxation spectrum 𝐻𝐻(𝑣𝑣) 
characterizes the distribution of relaxation frequencies 
𝑣𝑣 ≥ 0. Equation (5) yields a formal definition of a 
relaxation spectrum [4, 21].  

The spectrum representation of (5) guarantees 
that the modulus 𝐺𝐺(𝑡𝑡) is a completely monotone function, 
i.e. that 𝐺𝐺(𝑡𝑡) has derivatives of all orders and satisfies: 

 

 (−1)𝑛𝑛 𝑑𝑑𝑛𝑛

𝑑𝑑𝑡𝑡𝑛𝑛 𝐺𝐺(𝑡𝑡) ≥ 0   for all  𝑡𝑡 > 0   and  𝑛𝑛 = 0,1,2, … . 

b 

(𝐸𝐸1, 𝜏𝜏1, 𝛼𝛼) 

s

(𝐸𝐸2, 𝜏𝜏2, 𝛽𝛽) 

s
a 

(𝐸𝐸, 𝜏𝜏, 𝛼𝛼)

s

s

c 

𝐸𝐸

s 

h

s
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The above means, in particular, that 𝐺𝐺(𝑡𝑡) is a monotonically 
decreasing function. The completely monotonic character of 
𝐺𝐺(𝑡𝑡) is a necessary condition for the relaxation spectrum 
existence, however, it is not the sufficient one. The necessary 
and sufficient conditions of the existence of relaxation 
spectrum can be found in [21, 22].  

In [19] Schneider proved that the generalized Mittag-
Leffler function 𝐸𝐸𝑎𝑎,𝑏𝑏(−𝑥𝑥), 𝑥𝑥 ≥ 0 was completely 
monotonic for 𝑎𝑎 > 0, 𝑏𝑏 > 0 if and only if 0 < 𝑎𝑎 ≤ 1 and 
𝑏𝑏 > 𝑎𝑎. His proof is based on the application of the 
corresponding probability measures and the Hankel 
contour integration [19]. The same result was obtained by 
Miller and Samko [12] as an immediate corollary of the 
known Pollard’s result [15] concerning the complete 
monotonicity of one parameter Mittag-Leffler function 
𝐸𝐸𝑎𝑎(𝑥𝑥) = 𝐸𝐸𝑎𝑎,1(𝑥𝑥).  

Thus, the FMM relaxation modulus (3) is a completely 
monotone function, since the product of two completely 
monotone functions is completely monotone [1; Lemma 
6]. The necessary condition of the existence of 
nonnegative relaxation spectrum is satisfied, see [21; 
Remark 5].  

Let us define: 
 

 𝑒𝑒𝑎𝑎,𝑏𝑏(𝑡𝑡; 𝜆𝜆) = 𝑡𝑡𝑏𝑏−1𝐸𝐸𝑎𝑎,𝑏𝑏(−𝜆𝜆𝑡𝑡𝑎𝑎). (6) 
 
In [6] for the case 0 < 𝑎𝑎 ≤ 𝑏𝑏 < 1, 𝜆𝜆 > 0, the following 
integral representation is obtained using the complex 
Bromwich formula to invert the Laplace transform of (6) 
and bending the Bromwich path into the Hankel path:  
 
 𝑒𝑒𝑎𝑎,𝑏𝑏(𝑡𝑡; 𝜆𝜆) = ∫ 𝑒𝑒−𝑟𝑟𝑟𝑟𝐾𝐾𝑎𝑎,𝑏𝑏(𝑟𝑟; 𝜆𝜆)𝑑𝑑𝑑𝑑

∞
0 , (7) 

 
with the non-negative spectral function:  
 

 𝐾𝐾𝑎𝑎,𝑏𝑏(𝑟𝑟; 𝜆𝜆) =
1
𝜋𝜋
𝜆𝜆 𝑠𝑠𝑠𝑠𝑠𝑠[(𝑏𝑏−𝑎𝑎)𝜋𝜋]+𝑟𝑟𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠(𝑏𝑏𝑏𝑏)
𝑟𝑟2𝑎𝑎+2𝜆𝜆𝑟𝑟𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎𝑎𝑎)+𝜆𝜆2 𝑟𝑟𝑎𝑎−𝑏𝑏. (8) 

 
Note, that for 𝑎𝑎 = 𝛼𝛼 − 𝛽𝛽, 𝑏𝑏 = 1 − 𝛽𝛽 the above 
inequalities 0 < 𝑎𝑎 ≤ 𝑏𝑏 < 1 hold. Indeed:  
 
 0 < 𝛼𝛼 − 𝛽𝛽 ≤ 1 − 𝛽𝛽 < 1, 
 
iff (throughout, iff = if and only if) 0 < 𝛽𝛽 < 𝛼𝛼 ≤ 1.  

Putting in (6) 𝑎𝑎 = 𝛼𝛼 − 𝛽𝛽, 𝑏𝑏 = 1 − 𝛽𝛽 and 𝜆𝜆 = 1 the 
modulus (3) can be rewritten as:  

 

 𝐺𝐺(𝑡𝑡) = 𝐸𝐸𝑒𝑒𝛼𝛼−𝛽𝛽,1−𝛽𝛽 (
𝑡𝑡
𝜏𝜏 ; 1), 

 
whence, in view of the spectral representation (7) we 
have:  

 𝐺𝐺(𝑡𝑡) = 𝐸𝐸 ∫ 𝑒𝑒−𝑟𝑟
𝑡𝑡
𝜏𝜏𝐾𝐾𝛼𝛼−𝛽𝛽,1−𝛽𝛽(𝑟𝑟; 1)𝑑𝑑𝑑𝑑

∞
0 , 

and now, using the juxtposition 𝑣𝑣 = 𝑟𝑟
𝜏𝜏 we obtain: 

 
 𝐺𝐺(𝑡𝑡) = 𝐸𝐸𝐸𝐸 ∫ 𝑒𝑒−𝑣𝑣𝑣𝑣𝐾𝐾𝛼𝛼−𝛽𝛽,1−𝛽𝛽(𝑣𝑣𝑣𝑣; 1)𝑑𝑑𝑑𝑑

∞
0 . 

 
Taking into account definition (5) the spectrum of 

FMM for the relaxation frequencies 𝑣𝑣 > 0 is equal to:  
 

 𝐻𝐻(𝑣𝑣; 𝛼𝛼, 𝛽𝛽) = 𝐸𝐸𝐸𝐸𝐾𝐾𝛼𝛼−𝛽𝛽,1−𝛽𝛽(𝑣𝑣𝑣𝑣; 1), 
 
and in view of (8) turns out to be: 
 

𝐻𝐻(𝑣𝑣; 𝛼𝛼, 𝛽𝛽) =
𝐸𝐸𝐸𝐸 1

𝜋𝜋
𝑠𝑠𝑠𝑠𝑠𝑠[(1−𝛼𝛼)𝜋𝜋]+(𝑣𝑣𝑣𝑣)𝛼𝛼−𝛽𝛽𝑠𝑠𝑠𝑠𝑠𝑠[(1−𝛽𝛽)𝜋𝜋]

(𝑣𝑣𝑣𝑣)2(𝛼𝛼−𝛽𝛽)+2(𝑣𝑣𝑣𝑣)𝛼𝛼−𝛽𝛽 𝑐𝑐𝑐𝑐𝑐𝑐[(𝛼𝛼−𝛽𝛽)𝜋𝜋]+1 (𝑣𝑣𝑣𝑣)
𝛼𝛼−1. 

 
In view of the above and taking into account that 
𝑠𝑠𝑠𝑠𝑠𝑠[(1 − 𝛼𝛼)𝜋𝜋] = 𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼𝛼𝛼), the following result can be 
formulated.  
Corollary 1. If 0 < 𝛽𝛽 < 𝛼𝛼 ≤ 1, then the non-negative 
integrable relaxation spectrum 𝐻𝐻(𝑣𝑣; 𝛼𝛼, 𝛽𝛽) of the fractional 
Maxwell model there exists and for 𝑣𝑣 > 0 is given by the 
formula: 
 
 𝐻𝐻(𝑣𝑣; 𝛼𝛼, 𝛽𝛽) =
𝐸𝐸𝐸𝐸 1

𝜋𝜋
𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼𝛼𝛼)+(𝑣𝑣𝑣𝑣)𝛼𝛼−𝛽𝛽𝑠𝑠𝑠𝑠𝑠𝑠(𝛽𝛽𝛽𝛽)

(𝑣𝑣𝑣𝑣)2(𝛼𝛼−𝛽𝛽)+2(𝑣𝑣𝑣𝑣)𝛼𝛼−𝛽𝛽 𝑐𝑐𝑐𝑐𝑐𝑐[(𝛼𝛼−𝛽𝛽)𝜋𝜋]+1 (𝑣𝑣𝑣𝑣)
𝛼𝛼−1. (9) 

 
Denote for simplicity: 
 

 𝑥𝑥 = 𝑣𝑣𝑣𝑣, (10) 
 
 𝐴𝐴 = 𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼𝛼𝛼), (11) 
 
 𝐵𝐵 = 𝑠𝑠𝑠𝑠𝑠𝑠(𝛽𝛽𝛽𝛽), (12) 
 
 𝐶𝐶 = 𝑐𝑐𝑐𝑐𝑐𝑐[(𝛼𝛼 − 𝛽𝛽)𝜋𝜋]. (13) 
 
Under taken assumptions concerning 𝛼𝛼 and 𝛽𝛽 the two first 
parameters are such that 0 < 𝐴𝐴 ≤ 1 and 0 < 𝐵𝐵 ≤ 1, while 
the sign of 𝐶𝐶 depends on specific values of 𝛼𝛼 and 𝛽𝛽.  

Let us define for real 𝑥𝑥 the function: 
 

 𝜙𝜙(𝑥𝑥) = 𝐴𝐴𝑥𝑥𝛼𝛼−1 +𝐵𝐵𝐵𝐵2𝛼𝛼−𝛽𝛽−1

𝑥𝑥2(𝛼𝛼−𝛽𝛽)+2𝐶𝐶𝐶𝐶𝛼𝛼−𝛽𝛽+1. (14) 
 
From (9), (10) and (14) we have:  
 
 𝐻𝐻(𝑣𝑣; 𝛼𝛼, 𝛽𝛽) = 𝐸𝐸𝐸𝐸 1

𝜋𝜋 𝜙𝜙(𝑥𝑥)|𝑥𝑥=𝑣𝑣𝑣𝑣 = 𝐸𝐸𝐸𝐸 1
𝜋𝜋 𝜙𝜙(𝑣𝑣𝑣𝑣). (15) 

 
Thus, in order to study the properties of the relaxation 

spectrum 𝐻𝐻(𝑣𝑣; 𝛼𝛼, 𝛽𝛽) it is enough to analyze the properties 
of 𝜙𝜙(𝑥𝑥) (14). Moreover, according to the value of 𝛼𝛼, the 
analytical form of 𝐻𝐻(𝑣𝑣; 𝛼𝛼, 𝛽𝛽) (9) have different expressions 
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and properties. Thus, it is important to distinguish two 
different cases when 𝛼𝛼 is equal to one or not.  

 
 

MONOTONICITY. CASE 𝛼𝛼 < 1 
 

Here we assume that 0 < 𝛽𝛽 < 𝛼𝛼 < 1. The analysis of 
the spectrum asymptotic properties as 𝑣𝑣 → 0+ and 𝑣𝑣 →
∞, can be reduced to the study of the asymptotic 
properties of 𝜙𝜙(𝑥𝑥) as 𝑥𝑥 → 0+ and 𝑥𝑥 → ∞, respectively. 
Since 𝛼𝛼 − 1 < 0 and 𝛼𝛼 − 𝛽𝛽 > 0 we have: 

 

 𝑙𝑙𝑙𝑙𝑙𝑙𝑥𝑥→0+ 𝜙𝜙(𝑥𝑥) = 𝑙𝑙𝑙𝑙𝑙𝑙
𝑥𝑥→0+  𝐴𝐴𝑥𝑥𝛼𝛼−1 +𝐵𝐵𝐵𝐵2𝛼𝛼−𝛽𝛽−1

𝑥𝑥2(𝛼𝛼−𝛽𝛽)+2𝐶𝐶𝐶𝐶𝛼𝛼−𝛽𝛽+1 = ∞, 

 
regardless of the sign of the power (2𝛼𝛼 − 𝛽𝛽 − 1), and: 
 

 𝑙𝑙𝑙𝑙𝑙𝑙𝑥𝑥→∞ 𝜙𝜙(𝑥𝑥) = 𝑙𝑙𝑙𝑙𝑙𝑙
𝑥𝑥→∞

 𝐴𝐴𝑥𝑥𝛽𝛽−𝛼𝛼 +𝐵𝐵
𝑥𝑥1−𝛽𝛽+2𝐶𝐶𝐶𝐶1−𝛼𝛼+𝑥𝑥1−2𝛼𝛼+𝛽𝛽 = 0. 

 
Property 1. Let 0 < 𝛽𝛽 < 𝛼𝛼 < 1. For the relaxation 
spectrum 𝐻𝐻(𝑣𝑣; 𝛼𝛼, 𝛽𝛽) (9) we have: 
 
 𝑙𝑙𝑙𝑙𝑙𝑙𝑣𝑣→0+ 𝐻𝐻(𝑣𝑣; 𝛼𝛼, 𝛽𝛽) = ∞, (16) 
 
and 
 
 𝑙𝑙𝑙𝑙𝑙𝑙𝑣𝑣→∞ 𝐻𝐻(𝑣𝑣; 𝛼𝛼, 𝛽𝛽) = 0. (17) 

 
Thus, the spectrum of FMM is unbounded. In view of 

[21; Theorem 1] the last is not a surprise, since it can be 
proved that for the relaxation modulus (3) if 𝛼𝛼 < 1, then 
𝐺𝐺(𝑡𝑡) → ∞ as 𝑡𝑡 → 0+, i.e., the condition that 
𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡→0+ 𝐺𝐺(𝑡𝑡) < ∞ required to ensure the boundedness of 
the relaxation spectrum is not satisfied here, see [21; 
Theorem 1].  

 
Fig. 2. Relaxation spectra of FMM for 𝛼𝛼 = 0.6, 𝜏𝜏 =
100 [𝑠𝑠], 𝐸𝐸 = 1 [𝑃𝑃𝑃𝑃] 
 

Two typical curves of relaxation spectrum 𝐻𝐻(𝑣𝑣; 𝛼𝛼, 𝛽𝛽), 
shown in Fig. 2 and 3, plots the spectrum 𝐻𝐻(𝑣𝑣; 𝛼𝛼, 𝛽𝛽) 
versus frequency and represent the two characteristic 
shapes – monotonically decreasing in Fig. 2 and having 

extrema in Fig. 3. The course of 𝐻𝐻(𝑣𝑣; 𝛼𝛼, 𝛽𝛽) depends on 
the values of 𝛼𝛼 and 𝛽𝛽 parameters. To study the influence 
of the order parameters 𝛼𝛼 and 𝛽𝛽 on the spectrum, a more 
detailed analysis of the component function 𝜙𝜙(𝑥𝑥) (14), 
which allows for a deeper insight into the spectrum 
properties will be made. From (14) after straightforward 
manipulations the derivative 𝜙𝜙′(𝑥𝑥) can be obtained and 
expressed as:  

 
 𝜙𝜙′(𝑥𝑥) = 𝑥𝑥𝛼𝛼−2 𝜑𝜑(𝑥𝑥)

𝑔𝑔2(𝑥𝑥), (18) 

 
the notation 𝑑𝑑

𝑑𝑑𝑑𝑑 𝜙𝜙(𝑥𝑥) = 𝜙𝜙′(𝑥𝑥) is used for brevity, the 
numerator and denominator are given by:  
 
 𝜑𝜑(𝑥𝑥) = 𝑐𝑐3𝑥𝑥3(𝛼𝛼−𝛽𝛽) + 𝑐𝑐2𝑥𝑥2(𝛼𝛼−𝛽𝛽) + 𝑐𝑐1𝑥𝑥𝛼𝛼−𝛽𝛽 + 𝑐𝑐0, (19) 
 
and 
 

 𝑔𝑔(𝑥𝑥) = [𝑥𝑥𝛼𝛼−𝛽𝛽 + 𝐶𝐶]2 + 1 − 𝐶𝐶2, (20) 
 
with the coefficients defined as follows: 
 
 𝑐𝑐0 = (𝛼𝛼 − 1)𝐴𝐴, (21) 
 
 𝑐𝑐1 = 2(𝛽𝛽 − 1)𝐴𝐴𝐴𝐴 + (2𝛼𝛼 − 𝛽𝛽 − 1)𝐵𝐵, (22) 
 
 𝑐𝑐2 = 2(𝛼𝛼 − 1)𝐵𝐵𝐵𝐵 − (𝛼𝛼 − 2𝛽𝛽 + 1)𝐴𝐴, (23) 
 
 𝑐𝑐3 = (𝛽𝛽 − 1)𝐵𝐵. (24) 
 

It can be easily verified that for 0 < 𝛽𝛽 < 𝛼𝛼 < 1 both 
𝑐𝑐0 and 𝑐𝑐3 are negative, while the signs of 𝑐𝑐2 and 𝑐𝑐1 
depend on the values of 𝛼𝛼 and 𝛽𝛽. Note that since in view 
of the definition (13) for 0 < 𝛽𝛽 < 𝛼𝛼 < 1 we have 
−1 < 𝐶𝐶 < 1, the function 𝑔𝑔(𝑥𝑥) (20) is positive definite. 
Notice, that also the multiplicand 𝑥𝑥𝛼𝛼−2 in (18) is positive 
for all 𝑥𝑥 > 0, thus both the sign of the derivative 𝜙𝜙′(𝑥𝑥) as 
well as their real roots are identical to those of 𝜑𝜑(𝑥𝑥).  

 

 
Fig. 3. Relaxation spectra of FMM for 𝛼𝛼 = 0.8, 𝜏𝜏 = 1 [𝑠𝑠], 
𝐸𝐸 = 1 [𝑃𝑃𝑃𝑃] 
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 ON THE MONOTONICITY OF THE RELAXATION SPECTRUM 5 

 

Let: 
 2𝛼𝛼 − 𝛽𝛽 − 1 ≤ 0. (25) 
 
Since (25) means that 𝛼𝛼 < 𝛽𝛽

2 + 1
2, the next inequality 

results:  
 
 𝛼𝛼 < 𝛽𝛽 + 1

2, (26) 
 
whence (𝛼𝛼 − 𝛽𝛽)𝜋𝜋 < 𝜋𝜋

2, which implies that 𝐶𝐶 = 𝑐𝑐𝑐𝑐𝑐𝑐[(𝛼𝛼 −
𝛽𝛽)𝜋𝜋] > 0 and 𝑐𝑐1 < 0. Since, under the assumption 
0 < 𝛽𝛽 < 𝛼𝛼 < 1 we have  𝛼𝛼 − 2𝛽𝛽 + 1 > 0, also the 
coefficient 𝑐𝑐2 < 0. Thus in (25) case, all the coefficients 
of the function 𝜑𝜑(𝑥𝑥) (19) are negative, and in view of 
(18), the derivative 𝜙𝜙′(𝑥𝑥) < 0 for all 𝑥𝑥 > 0, whence, the 
relaxation spectrum 𝐻𝐻(𝑣𝑣; 𝛼𝛼, 𝛽𝛽) (15) is monotonically 
decreasing function. From (18) in straightforward way we 
have:  
 

 𝜙𝜙′′(𝑥𝑥) = (𝛼𝛼−2)𝑥𝑥𝛼𝛼−3𝜑𝜑(𝑥𝑥)+𝑥𝑥𝛼𝛼−2𝜑𝜑′(𝑥𝑥)
[𝑔𝑔(𝑥𝑥)]2 − 2𝑥𝑥𝛼𝛼−2𝜑𝜑(𝑥𝑥)𝑔𝑔′(𝑥𝑥)

[𝑔𝑔(𝑥𝑥)]3 , (27) 

 
where (20) gives: 
 
 𝑔𝑔′(𝑥𝑥) = 2(𝛼𝛼 − 𝛽𝛽)𝑥𝑥𝛼𝛼−𝛽𝛽−1[𝑥𝑥(𝛼𝛼−𝛽𝛽) + 𝐶𝐶] > 0, 
 
for all 𝑥𝑥 > 0 when (25) holds, whence the second 
summand of the right hand side of (27) is positive if 
𝑥𝑥 > 0. From (19), taking into account (22)-(24), we have: 
 
 𝜑𝜑′(𝑥𝑥) = (𝛼𝛼 − 𝛽𝛽)𝑥𝑥𝛼𝛼−𝛽𝛽−1(3𝑐𝑐3𝑥𝑥2(𝛼𝛼−𝛽𝛽) + 2𝑐𝑐2𝑥𝑥𝛼𝛼−𝛽𝛽 + 𝑐𝑐1), 
 
thus the numerator:  
 
 𝜓𝜓(𝑥𝑥) = (𝛼𝛼 − 2)𝑥𝑥𝛼𝛼−3𝜑𝜑(𝑥𝑥) + 𝑥𝑥𝛼𝛼−2𝜑𝜑′(𝑥𝑥), 
 
of the first summand of 𝜙𝜙′′(𝑥𝑥) (27) in view of (19) and 
(22)-(24) is given by: 

 
𝜓𝜓(𝑥𝑥) = (𝛼𝛼 − 2)𝑥𝑥𝛼𝛼−3[𝑐𝑐3𝑥𝑥3(𝛼𝛼−𝛽𝛽) + 𝑐𝑐2𝑥𝑥2(𝛼𝛼−𝛽𝛽)  + 𝑐𝑐1𝑥𝑥𝛼𝛼−𝛽𝛽 + 𝑐𝑐0] 

+(𝛼𝛼 − 𝛽𝛽)𝑥𝑥𝛼𝛼−2𝑥𝑥𝛼𝛼−𝛽𝛽−1(3𝑐𝑐3𝑥𝑥2(𝛼𝛼−𝛽𝛽) + 2𝑐𝑐2𝑥𝑥𝛼𝛼−𝛽𝛽 + 𝑐𝑐1), 
 

and can be expressed as: 
 

𝜓𝜓(𝑥𝑥) = 𝑥𝑥𝛼𝛼−3{(4𝛼𝛼 − 3𝛽𝛽 − 2)𝑐𝑐3𝑥𝑥3(𝛼𝛼−𝛽𝛽)

+ (3𝛼𝛼 − 2𝛽𝛽 − 2)𝑐𝑐2𝑥𝑥2(𝛼𝛼−𝛽𝛽) 
 +(2𝛼𝛼 − 𝛽𝛽 − 2)𝑐𝑐1𝑥𝑥𝛼𝛼−𝛽𝛽 + (𝛼𝛼 − 2)𝑐𝑐0}. (28) 

 
The inequality (25) implies, in particular, that: 
 
 4𝛼𝛼 − 2𝛽𝛽 − 2 ≤ 0, 

what, in turn, implies 4𝛼𝛼 − 3𝛽𝛽 − 2 < 0, thus the 
coefficient (4𝛼𝛼 − 3𝛽𝛽 − 2)𝑐𝑐3 > 0, since 𝑐𝑐3 < 0. Next, 
from (25) and (26) we have: 
 
 3𝛼𝛼 − 2𝛽𝛽 − 3

2 < 0, 
 
what together with 𝑐𝑐2 < 0 implies that (3𝛼𝛼 − 2𝛽𝛽 −
2)𝑐𝑐2 > 0. The positivity of two next coefficients (2𝛼𝛼 −
𝛽𝛽 − 2)𝑐𝑐1 and (𝛼𝛼 − 2)𝑐𝑐0 are obvious and the positive 
definiteness of 𝜓𝜓(𝑥𝑥) (28), and in consequence of 𝜙𝜙′′(𝑥𝑥) 
(27) follows. Thus, the relaxation spectrum is convex in 
(25) case and the following sufficient condition is stated.  
Corollary 2. Let 0 < 𝛽𝛽 < 𝛼𝛼 < 1. If additionally 2𝛼𝛼 −
𝛽𝛽 − 1 ≤ 0, then the relaxation spectrum 𝐻𝐻(𝑣𝑣; 𝛼𝛼, 𝛽𝛽) (9) is 
monotonically decreasing convex function.  

The next property results immediately from Corollary 
2 and the above analysis by contradiction.  
Corollary 3. Let 0 < 𝛽𝛽 < 𝛼𝛼 < 1. If the relaxation 
spectrum 𝐻𝐻(𝑣𝑣; 𝛼𝛼, 𝛽𝛽) (9) has local minimum and local 
maximum, then:  
 
 2𝛼𝛼 − 𝛽𝛽 − 1 > 0. (29) 
 

Note that from (29) it follows, in particular, that 𝛼𝛼 > 1
2.  

Let us introduce a new variable: 
 

 𝑦𝑦 = 𝑥𝑥𝛼𝛼−𝛽𝛽 > 0, (30) 
 
and define a new function:  
 
 𝜑̅𝜑(𝑦𝑦) = 𝜑̅𝜑(𝑥𝑥𝛼𝛼−𝛽𝛽) = 𝜑𝜑(𝑥𝑥). (31) 
From (19) we have:  
 
 𝜑̅𝜑(𝑦𝑦) = 𝑐𝑐3𝑦𝑦3 + 𝑐𝑐2𝑦𝑦2 + 𝑐𝑐1𝑦𝑦 + 𝑐𝑐0,  (32) 
 
where the coefficients are defined by (21)-(24).  

In order to state the necessary and sufficient 
conditions for the existence of the relaxation spectrum 
𝐻𝐻(𝑣𝑣; 𝛼𝛼, 𝛽𝛽) extrema, note that from the stationary point 
condition follows that the spectrum has a maximum for 
the relaxation frequency 𝑣𝑣 = 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 > 0 iff the respective 
𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 = (𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝜏𝜏)𝛼𝛼−𝛽𝛽 > 0 (compare (30) and (10)) is the 
root of the cubic function 𝜑̅𝜑(𝑦𝑦) (32). Similar property 
holds for the minimum frequency 𝑣𝑣 = 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 > 0 and 
corresponding 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 = (𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝜏𝜏)𝛼𝛼−𝛽𝛽 > 0, also being the 
root of 𝜑̅𝜑(𝑦𝑦). Thus, the analysis of the relaxation 
spectrum extremal properties has been reduced to the 
analysis of the properties and roots of the cubic function 
(third order polynomial) 𝜑̅𝜑(𝑦𝑦) (32) for 𝑦𝑦 > 0.  

In view of Property 1 (16), if the spectrum 𝐻𝐻(𝑣𝑣; 𝛼𝛼, 𝛽𝛽) 
has maximum, a minimum exists too. Since 𝜑̅𝜑(0) = 𝑐𝑐0 <
0 and 𝑙𝑙𝑙𝑙𝑙𝑙𝑦𝑦→−∞ 𝜑̅𝜑(𝑦𝑦) = ∞, the cubic function 𝜑̅𝜑(𝑦𝑦) has at 
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4 A. STANKIEWICZ 
and properties. Thus, it is important to distinguish two 
different cases when 𝛼𝛼 is equal to one or not.  

 
 

MONOTONICITY. CASE 𝛼𝛼 < 1 
 

Here we assume that 0 < 𝛽𝛽 < 𝛼𝛼 < 1. The analysis of 
the spectrum asymptotic properties as 𝑣𝑣 → 0+ and 𝑣𝑣 →
∞, can be reduced to the study of the asymptotic 
properties of 𝜙𝜙(𝑥𝑥) as 𝑥𝑥 → 0+ and 𝑥𝑥 → ∞, respectively. 
Since 𝛼𝛼 − 1 < 0 and 𝛼𝛼 − 𝛽𝛽 > 0 we have: 

 

 𝑙𝑙𝑙𝑙𝑙𝑙𝑥𝑥→0+ 𝜙𝜙(𝑥𝑥) = 𝑙𝑙𝑙𝑙𝑙𝑙
𝑥𝑥→0+  𝐴𝐴𝑥𝑥𝛼𝛼−1 +𝐵𝐵𝐵𝐵2𝛼𝛼−𝛽𝛽−1

𝑥𝑥2(𝛼𝛼−𝛽𝛽)+2𝐶𝐶𝐶𝐶𝛼𝛼−𝛽𝛽+1 = ∞, 

 
regardless of the sign of the power (2𝛼𝛼 − 𝛽𝛽 − 1), and: 
 

 𝑙𝑙𝑙𝑙𝑙𝑙𝑥𝑥→∞ 𝜙𝜙(𝑥𝑥) = 𝑙𝑙𝑙𝑙𝑙𝑙
𝑥𝑥→∞

 𝐴𝐴𝑥𝑥𝛽𝛽−𝛼𝛼 +𝐵𝐵
𝑥𝑥1−𝛽𝛽+2𝐶𝐶𝐶𝐶1−𝛼𝛼+𝑥𝑥1−2𝛼𝛼+𝛽𝛽 = 0. 

 
Property 1. Let 0 < 𝛽𝛽 < 𝛼𝛼 < 1. For the relaxation 
spectrum 𝐻𝐻(𝑣𝑣; 𝛼𝛼, 𝛽𝛽) (9) we have: 
 
 𝑙𝑙𝑙𝑙𝑙𝑙𝑣𝑣→0+ 𝐻𝐻(𝑣𝑣; 𝛼𝛼, 𝛽𝛽) = ∞, (16) 
 
and 
 
 𝑙𝑙𝑙𝑙𝑙𝑙𝑣𝑣→∞ 𝐻𝐻(𝑣𝑣; 𝛼𝛼, 𝛽𝛽) = 0. (17) 

 
Thus, the spectrum of FMM is unbounded. In view of 

[21; Theorem 1] the last is not a surprise, since it can be 
proved that for the relaxation modulus (3) if 𝛼𝛼 < 1, then 
𝐺𝐺(𝑡𝑡) → ∞ as 𝑡𝑡 → 0+, i.e., the condition that 
𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡→0+ 𝐺𝐺(𝑡𝑡) < ∞ required to ensure the boundedness of 
the relaxation spectrum is not satisfied here, see [21; 
Theorem 1].  

 
Fig. 2. Relaxation spectra of FMM for 𝛼𝛼 = 0.6, 𝜏𝜏 =
100 [𝑠𝑠], 𝐸𝐸 = 1 [𝑃𝑃𝑃𝑃] 
 

Two typical curves of relaxation spectrum 𝐻𝐻(𝑣𝑣; 𝛼𝛼, 𝛽𝛽), 
shown in Fig. 2 and 3, plots the spectrum 𝐻𝐻(𝑣𝑣; 𝛼𝛼, 𝛽𝛽) 
versus frequency and represent the two characteristic 
shapes – monotonically decreasing in Fig. 2 and having 

extrema in Fig. 3. The course of 𝐻𝐻(𝑣𝑣; 𝛼𝛼, 𝛽𝛽) depends on 
the values of 𝛼𝛼 and 𝛽𝛽 parameters. To study the influence 
of the order parameters 𝛼𝛼 and 𝛽𝛽 on the spectrum, a more 
detailed analysis of the component function 𝜙𝜙(𝑥𝑥) (14), 
which allows for a deeper insight into the spectrum 
properties will be made. From (14) after straightforward 
manipulations the derivative 𝜙𝜙′(𝑥𝑥) can be obtained and 
expressed as:  

 
 𝜙𝜙′(𝑥𝑥) = 𝑥𝑥𝛼𝛼−2 𝜑𝜑(𝑥𝑥)

𝑔𝑔2(𝑥𝑥), (18) 

 
the notation 𝑑𝑑

𝑑𝑑𝑑𝑑 𝜙𝜙(𝑥𝑥) = 𝜙𝜙′(𝑥𝑥) is used for brevity, the 
numerator and denominator are given by:  
 
 𝜑𝜑(𝑥𝑥) = 𝑐𝑐3𝑥𝑥3(𝛼𝛼−𝛽𝛽) + 𝑐𝑐2𝑥𝑥2(𝛼𝛼−𝛽𝛽) + 𝑐𝑐1𝑥𝑥𝛼𝛼−𝛽𝛽 + 𝑐𝑐0, (19) 
 
and 
 

 𝑔𝑔(𝑥𝑥) = [𝑥𝑥𝛼𝛼−𝛽𝛽 + 𝐶𝐶]2 + 1 − 𝐶𝐶2, (20) 
 
with the coefficients defined as follows: 
 
 𝑐𝑐0 = (𝛼𝛼 − 1)𝐴𝐴, (21) 
 
 𝑐𝑐1 = 2(𝛽𝛽 − 1)𝐴𝐴𝐴𝐴 + (2𝛼𝛼 − 𝛽𝛽 − 1)𝐵𝐵, (22) 
 
 𝑐𝑐2 = 2(𝛼𝛼 − 1)𝐵𝐵𝐵𝐵 − (𝛼𝛼 − 2𝛽𝛽 + 1)𝐴𝐴, (23) 
 
 𝑐𝑐3 = (𝛽𝛽 − 1)𝐵𝐵. (24) 
 

It can be easily verified that for 0 < 𝛽𝛽 < 𝛼𝛼 < 1 both 
𝑐𝑐0 and 𝑐𝑐3 are negative, while the signs of 𝑐𝑐2 and 𝑐𝑐1 
depend on the values of 𝛼𝛼 and 𝛽𝛽. Note that since in view 
of the definition (13) for 0 < 𝛽𝛽 < 𝛼𝛼 < 1 we have 
−1 < 𝐶𝐶 < 1, the function 𝑔𝑔(𝑥𝑥) (20) is positive definite. 
Notice, that also the multiplicand 𝑥𝑥𝛼𝛼−2 in (18) is positive 
for all 𝑥𝑥 > 0, thus both the sign of the derivative 𝜙𝜙′(𝑥𝑥) as 
well as their real roots are identical to those of 𝜑𝜑(𝑥𝑥).  
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Let: 
 2𝛼𝛼 − 𝛽𝛽 − 1 ≤ 0. (25) 
 
Since (25) means that 𝛼𝛼 < 𝛽𝛽

2 + 1
2, the next inequality 

results:  
 
 𝛼𝛼 < 𝛽𝛽 + 1

2, (26) 
 
whence (𝛼𝛼 − 𝛽𝛽)𝜋𝜋 < 𝜋𝜋

2, which implies that 𝐶𝐶 = 𝑐𝑐𝑐𝑐𝑐𝑐[(𝛼𝛼 −
𝛽𝛽)𝜋𝜋] > 0 and 𝑐𝑐1 < 0. Since, under the assumption 
0 < 𝛽𝛽 < 𝛼𝛼 < 1 we have  𝛼𝛼 − 2𝛽𝛽 + 1 > 0, also the 
coefficient 𝑐𝑐2 < 0. Thus in (25) case, all the coefficients 
of the function 𝜑𝜑(𝑥𝑥) (19) are negative, and in view of 
(18), the derivative 𝜙𝜙′(𝑥𝑥) < 0 for all 𝑥𝑥 > 0, whence, the 
relaxation spectrum 𝐻𝐻(𝑣𝑣; 𝛼𝛼, 𝛽𝛽) (15) is monotonically 
decreasing function. From (18) in straightforward way we 
have:  
 

 𝜙𝜙′′(𝑥𝑥) = (𝛼𝛼−2)𝑥𝑥𝛼𝛼−3𝜑𝜑(𝑥𝑥)+𝑥𝑥𝛼𝛼−2𝜑𝜑′(𝑥𝑥)
[𝑔𝑔(𝑥𝑥)]2 − 2𝑥𝑥𝛼𝛼−2𝜑𝜑(𝑥𝑥)𝑔𝑔′(𝑥𝑥)

[𝑔𝑔(𝑥𝑥)]3 , (27) 

 
where (20) gives: 
 
 𝑔𝑔′(𝑥𝑥) = 2(𝛼𝛼 − 𝛽𝛽)𝑥𝑥𝛼𝛼−𝛽𝛽−1[𝑥𝑥(𝛼𝛼−𝛽𝛽) + 𝐶𝐶] > 0, 
 
for all 𝑥𝑥 > 0 when (25) holds, whence the second 
summand of the right hand side of (27) is positive if 
𝑥𝑥 > 0. From (19), taking into account (22)-(24), we have: 
 
 𝜑𝜑′(𝑥𝑥) = (𝛼𝛼 − 𝛽𝛽)𝑥𝑥𝛼𝛼−𝛽𝛽−1(3𝑐𝑐3𝑥𝑥2(𝛼𝛼−𝛽𝛽) + 2𝑐𝑐2𝑥𝑥𝛼𝛼−𝛽𝛽 + 𝑐𝑐1), 
 
thus the numerator:  
 
 𝜓𝜓(𝑥𝑥) = (𝛼𝛼 − 2)𝑥𝑥𝛼𝛼−3𝜑𝜑(𝑥𝑥) + 𝑥𝑥𝛼𝛼−2𝜑𝜑′(𝑥𝑥), 
 
of the first summand of 𝜙𝜙′′(𝑥𝑥) (27) in view of (19) and 
(22)-(24) is given by: 

 
𝜓𝜓(𝑥𝑥) = (𝛼𝛼 − 2)𝑥𝑥𝛼𝛼−3[𝑐𝑐3𝑥𝑥3(𝛼𝛼−𝛽𝛽) + 𝑐𝑐2𝑥𝑥2(𝛼𝛼−𝛽𝛽)  + 𝑐𝑐1𝑥𝑥𝛼𝛼−𝛽𝛽 + 𝑐𝑐0] 

+(𝛼𝛼 − 𝛽𝛽)𝑥𝑥𝛼𝛼−2𝑥𝑥𝛼𝛼−𝛽𝛽−1(3𝑐𝑐3𝑥𝑥2(𝛼𝛼−𝛽𝛽) + 2𝑐𝑐2𝑥𝑥𝛼𝛼−𝛽𝛽 + 𝑐𝑐1), 
 

and can be expressed as: 
 

𝜓𝜓(𝑥𝑥) = 𝑥𝑥𝛼𝛼−3{(4𝛼𝛼 − 3𝛽𝛽 − 2)𝑐𝑐3𝑥𝑥3(𝛼𝛼−𝛽𝛽)

+ (3𝛼𝛼 − 2𝛽𝛽 − 2)𝑐𝑐2𝑥𝑥2(𝛼𝛼−𝛽𝛽) 
 +(2𝛼𝛼 − 𝛽𝛽 − 2)𝑐𝑐1𝑥𝑥𝛼𝛼−𝛽𝛽 + (𝛼𝛼 − 2)𝑐𝑐0}. (28) 

 
The inequality (25) implies, in particular, that: 
 
 4𝛼𝛼 − 2𝛽𝛽 − 2 ≤ 0, 

what, in turn, implies 4𝛼𝛼 − 3𝛽𝛽 − 2 < 0, thus the 
coefficient (4𝛼𝛼 − 3𝛽𝛽 − 2)𝑐𝑐3 > 0, since 𝑐𝑐3 < 0. Next, 
from (25) and (26) we have: 
 
 3𝛼𝛼 − 2𝛽𝛽 − 3

2 < 0, 
 
what together with 𝑐𝑐2 < 0 implies that (3𝛼𝛼 − 2𝛽𝛽 −
2)𝑐𝑐2 > 0. The positivity of two next coefficients (2𝛼𝛼 −
𝛽𝛽 − 2)𝑐𝑐1 and (𝛼𝛼 − 2)𝑐𝑐0 are obvious and the positive 
definiteness of 𝜓𝜓(𝑥𝑥) (28), and in consequence of 𝜙𝜙′′(𝑥𝑥) 
(27) follows. Thus, the relaxation spectrum is convex in 
(25) case and the following sufficient condition is stated.  
Corollary 2. Let 0 < 𝛽𝛽 < 𝛼𝛼 < 1. If additionally 2𝛼𝛼 −
𝛽𝛽 − 1 ≤ 0, then the relaxation spectrum 𝐻𝐻(𝑣𝑣; 𝛼𝛼, 𝛽𝛽) (9) is 
monotonically decreasing convex function.  

The next property results immediately from Corollary 
2 and the above analysis by contradiction.  
Corollary 3. Let 0 < 𝛽𝛽 < 𝛼𝛼 < 1. If the relaxation 
spectrum 𝐻𝐻(𝑣𝑣; 𝛼𝛼, 𝛽𝛽) (9) has local minimum and local 
maximum, then:  
 
 2𝛼𝛼 − 𝛽𝛽 − 1 > 0. (29) 
 

Note that from (29) it follows, in particular, that 𝛼𝛼 > 1
2.  

Let us introduce a new variable: 
 

 𝑦𝑦 = 𝑥𝑥𝛼𝛼−𝛽𝛽 > 0, (30) 
 
and define a new function:  
 
 𝜑̅𝜑(𝑦𝑦) = 𝜑̅𝜑(𝑥𝑥𝛼𝛼−𝛽𝛽) = 𝜑𝜑(𝑥𝑥). (31) 
From (19) we have:  
 
 𝜑̅𝜑(𝑦𝑦) = 𝑐𝑐3𝑦𝑦3 + 𝑐𝑐2𝑦𝑦2 + 𝑐𝑐1𝑦𝑦 + 𝑐𝑐0,  (32) 
 
where the coefficients are defined by (21)-(24).  

In order to state the necessary and sufficient 
conditions for the existence of the relaxation spectrum 
𝐻𝐻(𝑣𝑣; 𝛼𝛼, 𝛽𝛽) extrema, note that from the stationary point 
condition follows that the spectrum has a maximum for 
the relaxation frequency 𝑣𝑣 = 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 > 0 iff the respective 
𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 = (𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝜏𝜏)𝛼𝛼−𝛽𝛽 > 0 (compare (30) and (10)) is the 
root of the cubic function 𝜑̅𝜑(𝑦𝑦) (32). Similar property 
holds for the minimum frequency 𝑣𝑣 = 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 > 0 and 
corresponding 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 = (𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝜏𝜏)𝛼𝛼−𝛽𝛽 > 0, also being the 
root of 𝜑̅𝜑(𝑦𝑦). Thus, the analysis of the relaxation 
spectrum extremal properties has been reduced to the 
analysis of the properties and roots of the cubic function 
(third order polynomial) 𝜑̅𝜑(𝑦𝑦) (32) for 𝑦𝑦 > 0.  

In view of Property 1 (16), if the spectrum 𝐻𝐻(𝑣𝑣; 𝛼𝛼, 𝛽𝛽) 
has maximum, a minimum exists too. Since 𝜑̅𝜑(0) = 𝑐𝑐0 <
0 and 𝑙𝑙𝑙𝑙𝑙𝑙𝑦𝑦→−∞ 𝜑̅𝜑(𝑦𝑦) = ∞, the cubic function 𝜑̅𝜑(𝑦𝑦) has at 
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least one real root on the negative real axis. Thus, from 
the point of view of the course of the relaxation spectrum, 
and in particular from the point of view of the existence 
of its extrema, the existence or not of positive real roots of 
the function 𝜑̅𝜑(𝑦𝑦) is basic. The necessary and sufficient 
conditions of the existence of three real roots of third 
order polynomials are known, as well as the analytical 
methods for their computation. The algebraic solution of 
the cubic equation can be derived in a number of different 
ways. The Cardano’s method dated 1545 and Vieta’s 
method published in 1615 are the most known. The two 
methods are combined here and applied to the cubic 
equation 𝜑̅𝜑(𝑦𝑦) = 0, which takes the standard form: 

 
 𝑐𝑐3𝑦𝑦3 + 𝑐𝑐2𝑦𝑦2 + 𝑐𝑐1𝑦𝑦 + 𝑐𝑐0 = 0. (33) 
 
Applying the standard substitution: 
 
 𝑦𝑦 = 𝑧𝑧 − 𝑐𝑐2

3𝑐𝑐3
, (34) 

 
and dividing equation (33) by 𝑐𝑐3 we get so-called 
depressed cubic equation with the zero quadratic term 
coefficient: 
 
 𝑧𝑧3 + 3𝑝𝑝𝑝𝑝 + 2𝑞𝑞 = 0, (35) 
 
where: 
 

 3𝑝𝑝 = 3𝑐𝑐3𝑐𝑐1−[𝑐𝑐2]2

3[𝑐𝑐3]2 , (36) 

 

 2𝑞𝑞 = 2[𝑐𝑐2]3

27[𝑐𝑐3]3 − 𝑐𝑐2𝑐𝑐1
3[𝑐𝑐3]2 + 𝑐𝑐0

𝑐𝑐3
. (37) 

 
The number and types of roots are uniquely determined 
by the determinant of the cubic equation defined as 
follows: 
 
 𝐷𝐷 = 𝑞𝑞2 + 𝑝𝑝3. (38) 
 
The depressed cubic equation (35) has three real roots iff 
𝐷𝐷 ≤ 0. If the determinant 𝐷𝐷 = 0, then the equation (35), 
and whence (33), has a multiple real root, all of its roots 
are real. If 𝑝𝑝 = 𝑞𝑞 = 0, i.e., 3𝑐𝑐3𝑐𝑐1 − [𝑐𝑐2]2 = 0 and 
2[𝑐𝑐2]3 − 9𝑐𝑐3𝑐𝑐2𝑐𝑐1 + 27[𝑐𝑐3]2𝑐𝑐0 = 0, what implies 
27[𝑐𝑐3]2𝑐𝑐0 = [𝑐𝑐2]3, the triple root is such that 𝑦𝑦1_3 =
− 𝑐𝑐2

3𝑐𝑐3
= − 9𝑐𝑐3𝑐𝑐0

[𝑐𝑐2]2 < 0 (for derivation the equation (39) 

below may be used). Thus 𝜑̅𝜑(𝑦𝑦) < 0 for all 𝑦𝑦 > 0. If 
𝑝𝑝3 = −𝑞𝑞2 ≠ 0, then the equation (35) has two real roots, 
one of them is double. It may be proved that simple 
(single) root is negative. Even if the double root is 
positive, the function 𝜑̅𝜑(𝑦𝑦), and hence the derivative 
𝜙𝜙′(𝑥𝑥) (18) is negative on both sides of the root. The 

relaxation spectrum decreases in the neighbourhood of 
respective relaxation frequency, what due to the 
asymptotic properties (16) and (17) results in the next 
property.  
Corollary 4. Let 0 < 𝛽𝛽 < 𝛼𝛼 < 1. If 𝛼𝛼 and 𝛽𝛽 are such that 
the determinant 𝐷𝐷 = 0, i.e.:  
 
[2[𝑐𝑐2]3 − 9𝑐𝑐3𝑐𝑐2𝑐𝑐1 + 27[𝑐𝑐3]2𝑐𝑐0]2 = −4[3𝑐𝑐3𝑐𝑐1 − [𝑐𝑐2]2]3, 
 
where the coefficients 𝑐𝑐𝑖𝑖, 𝑖𝑖 = 0,1,2,3 are defined by (21)-
(24), then the relaxation spectrum 𝐻𝐻(𝑣𝑣; 𝛼𝛼, 𝛽𝛽) (9) is 
monotonically decreasing function for 𝑣𝑣 > 0.  

If 𝐷𝐷 < 0, then the cubic equation (35) roots are 
obtained by Viète’s formulas [16] in terms of 
trigonometric functions (except when 𝑝𝑝 = 0, but it is not 
the case for 𝐷𝐷 < 0), which in view of (34) for the original 
third order equation (35) results in the three different real 
roots: 

 
 𝑦𝑦1 = −2𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐 (𝜃𝜃

3) − 𝑐𝑐2
3𝑐𝑐3

, (39) 

 
 𝑦𝑦2 = 2𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐 (𝜋𝜋−𝜃𝜃

3 ) − 𝑐𝑐2
3𝑐𝑐3

, (40) 

 
 𝑦𝑦3 = 2𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐 (𝜋𝜋+𝜃𝜃

3 ) − 𝑐𝑐2
3𝑐𝑐3

, (41) 

 
where:  
 
 𝑟𝑟 = 𝑠𝑠𝑠𝑠𝑠𝑠(𝑞𝑞)√|𝑝𝑝|, 
 
and the angle 𝜃𝜃 is such that: 
 
 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃) = 𝑞𝑞

𝑟𝑟3. (42) 
 
Note, that 𝐷𝐷 < 0, which in view of (38) implies 𝑝𝑝 < 0, 
and next: 
 
 0 ≤ |𝑞𝑞| < |𝑝𝑝|√|𝑝𝑝|, 
 
guarantee that 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃) given by (42) is such that:  
 
 0 ≤ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃) = 𝑞𝑞

𝑠𝑠𝑠𝑠𝑠𝑠(𝑞𝑞)|𝑝𝑝|√|𝑝𝑝| = |𝑞𝑞|
|𝑝𝑝|√|𝑝𝑝| < 1, 

 
whence: 
 

 0 < 𝜃𝜃 = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐 ( 𝑞𝑞
𝑟𝑟3) ≤ 𝜋𝜋

2.  
 
If 𝑞𝑞 > 0, then 𝑟𝑟 > 0 and the inequalities occur: 
 

 −2𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐 (𝜃𝜃
3) < 0 < 2𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐 (𝜋𝜋+𝜃𝜃

3 ) < 2𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐 (𝜋𝜋−𝜃𝜃
3 ), 
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whence we have: 
 
 𝑦𝑦1 < 𝑦𝑦3 < 𝑦𝑦2.  
 
If 𝑞𝑞 < 0, then 𝑟𝑟 < 0 and we have the inequalities: 
 

 −2𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐 (𝜃𝜃3) > 0 > 2𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐 (𝜋𝜋+𝜃𝜃3 ) > 2𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐 (𝜋𝜋−𝜃𝜃3 ), 
 
whence the relation follows: 
 
 𝑦𝑦1 > 𝑦𝑦3 > 𝑦𝑦2. 
 
If 𝑞𝑞 = 0, then 𝑟𝑟 > 0 and 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃) = 0, whence 𝜃𝜃 = 𝜋𝜋

2 and 
the three real roots are such that: 
 
  𝑦𝑦1 < 𝑦𝑦3 < 𝑦𝑦2.  
 
The basic property has been proved. 
Theorem 1. Let 0 < 𝛽𝛽 < 𝛼𝛼 < 1. If 𝛼𝛼 and 𝛽𝛽 are such that 
the determinant 𝐷𝐷 < 0, i.e.:  
 

[2[𝑐𝑐2]3 − 9𝑐𝑐3𝑐𝑐2𝑐𝑐1 + 27[𝑐𝑐3]2𝑐𝑐0]2 < −4[3𝑐𝑐3𝑐𝑐1 − [𝑐𝑐2]2]3, (43) 
 

where the coefficients 𝑐𝑐𝑖𝑖, 𝑖𝑖 = 0,1,2,3 are defined by (21)-
(24), then the relaxation spectrum 𝐻𝐻(𝑣𝑣; 𝛼𝛼, 𝛽𝛽) (9) has local 

minimum 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 = 1
𝜏𝜏
(𝑦𝑦3)

1
𝛼𝛼−𝛽𝛽 and local maximum 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚  

given by:  
 

 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 =
1
𝜏𝜏 (𝑦𝑦2)

1
𝛼𝛼−𝛽𝛽    if    𝑞𝑞 ≥ 0, 

 

 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 =
1
𝜏𝜏 (𝑦𝑦1)

1
𝛼𝛼−𝛽𝛽    if    𝑞𝑞 < 0.  

 
Note that the necessary and sufficient condition for the 

existence of local extrema is the inequality 𝐷𝐷 < 0, which 
itself implies that 𝑝𝑝 < 0. Whence, by contradiction the 
next property holds. 
Corollary 5. Let 0 < 𝛽𝛽 < 𝛼𝛼 < 1. If 𝛼𝛼 and 𝛽𝛽 are such that 
𝑝𝑝 ≥ 0, which in view of (36) takes the form 3𝑐𝑐3𝑐𝑐1 −
[𝑐𝑐2]2 ≥ 0, then the relaxation spectrum 𝐻𝐻(𝑣𝑣; 𝛼𝛼, 𝛽𝛽) (9) 
does not have local minimum and local maximum, i.e. is 
monotonically decreasing function.  

The inequality 𝑝𝑝 ≥ 0 obviously implies 𝐷𝐷 ≥ 0, thus 
the condition from Corollary 4 is a special case of that 
stated above.  

The useful necessary, but not sufficient, simple 
condition for the existence of relaxation spectrum local 
maximum and minimum also results: 

 
 3𝑐𝑐3𝑐𝑐1 − [𝑐𝑐2]2 < 0, (44) 

which is satisfied, in particular, if 𝑐𝑐1 > 0. Thus, checking 
if (44) holds, avoids calculation of the determinant 𝐷𝐷 in 
the case, when it is not satisfied. 
 
 

MONOTONICITY. CASE 𝛼𝛼 = 1 
 

Up to now, the case where 𝛼𝛼 ≠ 1 has been considered. 
In assuming that 𝛼𝛼 = 1, the relaxation spectrum 
𝐻𝐻(𝑣𝑣; 𝛼𝛼, 𝛽𝛽) (9) is described by new analytical formula: 

 
 𝐻𝐻1(𝑣𝑣; 𝛽𝛽) = 𝐻𝐻(𝑣𝑣; 𝛼𝛼 = 1, 𝛽𝛽) = 

 𝐸𝐸𝐸𝐸 1
𝜋𝜋

(𝑣𝑣𝑣𝑣)1−𝛽𝛽𝑠𝑠𝑠𝑠𝑠𝑠[𝛽𝛽𝛽𝛽]
(𝑣𝑣𝑣𝑣)2(1−𝛽𝛽)−2(𝑣𝑣𝑣𝑣)1−𝛽𝛽 𝑐𝑐𝑐𝑐𝑐𝑐[𝛽𝛽𝛽𝛽]+1. (45) 

 
Now, the asymptotic properties of the spectrum 𝐻𝐻1(𝑣𝑣; 𝛽𝛽) 
are summarized in next property.  
Property 2. Let 0 < 𝛽𝛽 < 𝛼𝛼 = 1. The relaxation spectrum 
𝐻𝐻1(𝑣𝑣; 𝛽𝛽) (45) is such that: 
 
 𝑙𝑙𝑙𝑙𝑙𝑙𝑣𝑣→0+ 𝐻𝐻1(𝑣𝑣; 𝛽𝛽) = 0, 
 
and 
 
 𝑙𝑙𝑙𝑙𝑙𝑙𝑣𝑣→∞ 𝐻𝐻1(𝑣𝑣; 𝛽𝛽) = 0. 
 

By analogy to general model (15) the further analysis 
of spectrum 𝐻𝐻1(𝑣𝑣; 𝛽𝛽) (45) will use the multiplicative 
form: 

 
 𝐻𝐻1(𝑣𝑣; 𝛽𝛽) = 𝐸𝐸𝐸𝐸 1

𝜋𝜋 𝜙𝜙1(𝑥𝑥)|𝑥𝑥=𝑣𝑣𝑣𝑣 = 𝐸𝐸𝐸𝐸 1
𝜋𝜋 𝜙𝜙1(𝑣𝑣𝑣𝑣), 

 
here the function 𝜙𝜙1(𝑥𝑥), being an analogue of 𝜙𝜙(𝑥𝑥) (14), 
is given for 𝑥𝑥 > 0 by:  
 

 𝜙𝜙1(𝑥𝑥) =
𝐵𝐵𝐵𝐵1−𝛽𝛽

𝑥𝑥2(1−𝛽𝛽)+2𝐶𝐶𝐶𝐶1−𝛽𝛽+1, (46) 
 
where now 𝐶𝐶 = 𝑐𝑐𝑐𝑐𝑐𝑐[𝛽𝛽𝛽𝛽]. From (46) in straightforward 
way we have:  
 

 𝜙𝜙1
′ (𝑥𝑥) = (1 − 𝛽𝛽)𝐵𝐵 𝑥𝑥−𝛽𝛽[−𝑥𝑥2(1−𝛽𝛽)+1]

[𝑥𝑥2(1−𝛽𝛽)+2𝑥𝑥1−𝛽𝛽𝐶𝐶+1]2
. 

 
The stationary point equation 𝜙𝜙1

′ (𝑥𝑥) = 0 has for 𝑥𝑥 > 0 
unique real solution 𝑥𝑥 = 1, and since 𝜙𝜙1

′ (𝑥𝑥) > 0 for 
0 < 𝑥𝑥 < 1 and 𝜙𝜙1

′ (𝑥𝑥) < 0 for 𝑥𝑥 > 1, the component 
function 𝜙𝜙1(𝑥𝑥) has maximum at 𝑥𝑥 = 1. Thus, due to (10), 
the relaxation spectrum has maximum at:  
 
 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 =

1
𝜏𝜏, 

 
and the maximal value of the spectrum: 

122
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least one real root on the negative real axis. Thus, from 
the point of view of the course of the relaxation spectrum, 
and in particular from the point of view of the existence 
of its extrema, the existence or not of positive real roots of 
the function 𝜑̅𝜑(𝑦𝑦) is basic. The necessary and sufficient 
conditions of the existence of three real roots of third 
order polynomials are known, as well as the analytical 
methods for their computation. The algebraic solution of 
the cubic equation can be derived in a number of different 
ways. The Cardano’s method dated 1545 and Vieta’s 
method published in 1615 are the most known. The two 
methods are combined here and applied to the cubic 
equation 𝜑̅𝜑(𝑦𝑦) = 0, which takes the standard form: 

 
 𝑐𝑐3𝑦𝑦3 + 𝑐𝑐2𝑦𝑦2 + 𝑐𝑐1𝑦𝑦 + 𝑐𝑐0 = 0. (33) 
 
Applying the standard substitution: 
 
 𝑦𝑦 = 𝑧𝑧 − 𝑐𝑐2

3𝑐𝑐3
, (34) 

 
and dividing equation (33) by 𝑐𝑐3 we get so-called 
depressed cubic equation with the zero quadratic term 
coefficient: 
 
 𝑧𝑧3 + 3𝑝𝑝𝑝𝑝 + 2𝑞𝑞 = 0, (35) 
 
where: 
 

 3𝑝𝑝 = 3𝑐𝑐3𝑐𝑐1−[𝑐𝑐2]2

3[𝑐𝑐3]2 , (36) 

 

 2𝑞𝑞 = 2[𝑐𝑐2]3

27[𝑐𝑐3]3 − 𝑐𝑐2𝑐𝑐1
3[𝑐𝑐3]2 + 𝑐𝑐0

𝑐𝑐3
. (37) 

 
The number and types of roots are uniquely determined 
by the determinant of the cubic equation defined as 
follows: 
 
 𝐷𝐷 = 𝑞𝑞2 + 𝑝𝑝3. (38) 
 
The depressed cubic equation (35) has three real roots iff 
𝐷𝐷 ≤ 0. If the determinant 𝐷𝐷 = 0, then the equation (35), 
and whence (33), has a multiple real root, all of its roots 
are real. If 𝑝𝑝 = 𝑞𝑞 = 0, i.e., 3𝑐𝑐3𝑐𝑐1 − [𝑐𝑐2]2 = 0 and 
2[𝑐𝑐2]3 − 9𝑐𝑐3𝑐𝑐2𝑐𝑐1 + 27[𝑐𝑐3]2𝑐𝑐0 = 0, what implies 
27[𝑐𝑐3]2𝑐𝑐0 = [𝑐𝑐2]3, the triple root is such that 𝑦𝑦1_3 =
− 𝑐𝑐2

3𝑐𝑐3
= − 9𝑐𝑐3𝑐𝑐0

[𝑐𝑐2]2 < 0 (for derivation the equation (39) 

below may be used). Thus 𝜑̅𝜑(𝑦𝑦) < 0 for all 𝑦𝑦 > 0. If 
𝑝𝑝3 = −𝑞𝑞2 ≠ 0, then the equation (35) has two real roots, 
one of them is double. It may be proved that simple 
(single) root is negative. Even if the double root is 
positive, the function 𝜑̅𝜑(𝑦𝑦), and hence the derivative 
𝜙𝜙′(𝑥𝑥) (18) is negative on both sides of the root. The 

relaxation spectrum decreases in the neighbourhood of 
respective relaxation frequency, what due to the 
asymptotic properties (16) and (17) results in the next 
property.  
Corollary 4. Let 0 < 𝛽𝛽 < 𝛼𝛼 < 1. If 𝛼𝛼 and 𝛽𝛽 are such that 
the determinant 𝐷𝐷 = 0, i.e.:  
 
[2[𝑐𝑐2]3 − 9𝑐𝑐3𝑐𝑐2𝑐𝑐1 + 27[𝑐𝑐3]2𝑐𝑐0]2 = −4[3𝑐𝑐3𝑐𝑐1 − [𝑐𝑐2]2]3, 
 
where the coefficients 𝑐𝑐𝑖𝑖, 𝑖𝑖 = 0,1,2,3 are defined by (21)-
(24), then the relaxation spectrum 𝐻𝐻(𝑣𝑣; 𝛼𝛼, 𝛽𝛽) (9) is 
monotonically decreasing function for 𝑣𝑣 > 0.  

If 𝐷𝐷 < 0, then the cubic equation (35) roots are 
obtained by Viète’s formulas [16] in terms of 
trigonometric functions (except when 𝑝𝑝 = 0, but it is not 
the case for 𝐷𝐷 < 0), which in view of (34) for the original 
third order equation (35) results in the three different real 
roots: 

 
 𝑦𝑦1 = −2𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐 (𝜃𝜃

3) − 𝑐𝑐2
3𝑐𝑐3

, (39) 

 
 𝑦𝑦2 = 2𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐 (𝜋𝜋−𝜃𝜃

3 ) − 𝑐𝑐2
3𝑐𝑐3

, (40) 

 
 𝑦𝑦3 = 2𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐 (𝜋𝜋+𝜃𝜃

3 ) − 𝑐𝑐2
3𝑐𝑐3

, (41) 

 
where:  
 
 𝑟𝑟 = 𝑠𝑠𝑠𝑠𝑠𝑠(𝑞𝑞)√|𝑝𝑝|, 
 
and the angle 𝜃𝜃 is such that: 
 
 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃) = 𝑞𝑞

𝑟𝑟3. (42) 
 
Note, that 𝐷𝐷 < 0, which in view of (38) implies 𝑝𝑝 < 0, 
and next: 
 
 0 ≤ |𝑞𝑞| < |𝑝𝑝|√|𝑝𝑝|, 
 
guarantee that 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃) given by (42) is such that:  
 
 0 ≤ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃) = 𝑞𝑞

𝑠𝑠𝑠𝑠𝑠𝑠(𝑞𝑞)|𝑝𝑝|√|𝑝𝑝| = |𝑞𝑞|
|𝑝𝑝|√|𝑝𝑝| < 1, 

 
whence: 
 

 0 < 𝜃𝜃 = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐 ( 𝑞𝑞
𝑟𝑟3) ≤ 𝜋𝜋

2.  
 
If 𝑞𝑞 > 0, then 𝑟𝑟 > 0 and the inequalities occur: 
 

 −2𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐 (𝜃𝜃
3) < 0 < 2𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐 (𝜋𝜋+𝜃𝜃

3 ) < 2𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐 (𝜋𝜋−𝜃𝜃
3 ), 
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whence we have: 
 
 𝑦𝑦1 < 𝑦𝑦3 < 𝑦𝑦2.  
 
If 𝑞𝑞 < 0, then 𝑟𝑟 < 0 and we have the inequalities: 
 

 −2𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐 (𝜃𝜃3) > 0 > 2𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐 (𝜋𝜋+𝜃𝜃3 ) > 2𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐 (𝜋𝜋−𝜃𝜃3 ), 
 
whence the relation follows: 
 
 𝑦𝑦1 > 𝑦𝑦3 > 𝑦𝑦2. 
 
If 𝑞𝑞 = 0, then 𝑟𝑟 > 0 and 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃) = 0, whence 𝜃𝜃 = 𝜋𝜋

2 and 
the three real roots are such that: 
 
  𝑦𝑦1 < 𝑦𝑦3 < 𝑦𝑦2.  
 
The basic property has been proved. 
Theorem 1. Let 0 < 𝛽𝛽 < 𝛼𝛼 < 1. If 𝛼𝛼 and 𝛽𝛽 are such that 
the determinant 𝐷𝐷 < 0, i.e.:  
 

[2[𝑐𝑐2]3 − 9𝑐𝑐3𝑐𝑐2𝑐𝑐1 + 27[𝑐𝑐3]2𝑐𝑐0]2 < −4[3𝑐𝑐3𝑐𝑐1 − [𝑐𝑐2]2]3, (43) 
 

where the coefficients 𝑐𝑐𝑖𝑖, 𝑖𝑖 = 0,1,2,3 are defined by (21)-
(24), then the relaxation spectrum 𝐻𝐻(𝑣𝑣; 𝛼𝛼, 𝛽𝛽) (9) has local 

minimum 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 = 1
𝜏𝜏
(𝑦𝑦3)

1
𝛼𝛼−𝛽𝛽 and local maximum 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚  

given by:  
 

 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 =
1
𝜏𝜏 (𝑦𝑦2)

1
𝛼𝛼−𝛽𝛽    if    𝑞𝑞 ≥ 0, 

 

 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 =
1
𝜏𝜏 (𝑦𝑦1)

1
𝛼𝛼−𝛽𝛽    if    𝑞𝑞 < 0.  

 
Note that the necessary and sufficient condition for the 

existence of local extrema is the inequality 𝐷𝐷 < 0, which 
itself implies that 𝑝𝑝 < 0. Whence, by contradiction the 
next property holds. 
Corollary 5. Let 0 < 𝛽𝛽 < 𝛼𝛼 < 1. If 𝛼𝛼 and 𝛽𝛽 are such that 
𝑝𝑝 ≥ 0, which in view of (36) takes the form 3𝑐𝑐3𝑐𝑐1 −
[𝑐𝑐2]2 ≥ 0, then the relaxation spectrum 𝐻𝐻(𝑣𝑣; 𝛼𝛼, 𝛽𝛽) (9) 
does not have local minimum and local maximum, i.e. is 
monotonically decreasing function.  

The inequality 𝑝𝑝 ≥ 0 obviously implies 𝐷𝐷 ≥ 0, thus 
the condition from Corollary 4 is a special case of that 
stated above.  

The useful necessary, but not sufficient, simple 
condition for the existence of relaxation spectrum local 
maximum and minimum also results: 

 
 3𝑐𝑐3𝑐𝑐1 − [𝑐𝑐2]2 < 0, (44) 

which is satisfied, in particular, if 𝑐𝑐1 > 0. Thus, checking 
if (44) holds, avoids calculation of the determinant 𝐷𝐷 in 
the case, when it is not satisfied. 
 
 

MONOTONICITY. CASE 𝛼𝛼 = 1 
 

Up to now, the case where 𝛼𝛼 ≠ 1 has been considered. 
In assuming that 𝛼𝛼 = 1, the relaxation spectrum 
𝐻𝐻(𝑣𝑣; 𝛼𝛼, 𝛽𝛽) (9) is described by new analytical formula: 

 
 𝐻𝐻1(𝑣𝑣; 𝛽𝛽) = 𝐻𝐻(𝑣𝑣; 𝛼𝛼 = 1, 𝛽𝛽) = 

 𝐸𝐸𝐸𝐸 1
𝜋𝜋

(𝑣𝑣𝑣𝑣)1−𝛽𝛽𝑠𝑠𝑠𝑠𝑠𝑠[𝛽𝛽𝛽𝛽]
(𝑣𝑣𝑣𝑣)2(1−𝛽𝛽)−2(𝑣𝑣𝑣𝑣)1−𝛽𝛽 𝑐𝑐𝑐𝑐𝑐𝑐[𝛽𝛽𝛽𝛽]+1. (45) 

 
Now, the asymptotic properties of the spectrum 𝐻𝐻1(𝑣𝑣; 𝛽𝛽) 
are summarized in next property.  
Property 2. Let 0 < 𝛽𝛽 < 𝛼𝛼 = 1. The relaxation spectrum 
𝐻𝐻1(𝑣𝑣; 𝛽𝛽) (45) is such that: 
 
 𝑙𝑙𝑙𝑙𝑙𝑙𝑣𝑣→0+ 𝐻𝐻1(𝑣𝑣; 𝛽𝛽) = 0, 
 
and 
 
 𝑙𝑙𝑙𝑙𝑙𝑙𝑣𝑣→∞ 𝐻𝐻1(𝑣𝑣; 𝛽𝛽) = 0. 
 

By analogy to general model (15) the further analysis 
of spectrum 𝐻𝐻1(𝑣𝑣; 𝛽𝛽) (45) will use the multiplicative 
form: 

 
 𝐻𝐻1(𝑣𝑣; 𝛽𝛽) = 𝐸𝐸𝐸𝐸 1

𝜋𝜋 𝜙𝜙1(𝑥𝑥)|𝑥𝑥=𝑣𝑣𝑣𝑣 = 𝐸𝐸𝐸𝐸 1
𝜋𝜋 𝜙𝜙1(𝑣𝑣𝑣𝑣), 

 
here the function 𝜙𝜙1(𝑥𝑥), being an analogue of 𝜙𝜙(𝑥𝑥) (14), 
is given for 𝑥𝑥 > 0 by:  
 

 𝜙𝜙1(𝑥𝑥) =
𝐵𝐵𝐵𝐵1−𝛽𝛽

𝑥𝑥2(1−𝛽𝛽)+2𝐶𝐶𝐶𝐶1−𝛽𝛽+1, (46) 
 
where now 𝐶𝐶 = 𝑐𝑐𝑐𝑐𝑐𝑐[𝛽𝛽𝛽𝛽]. From (46) in straightforward 
way we have:  
 

 𝜙𝜙1
′ (𝑥𝑥) = (1 − 𝛽𝛽)𝐵𝐵 𝑥𝑥−𝛽𝛽[−𝑥𝑥2(1−𝛽𝛽)+1]

[𝑥𝑥2(1−𝛽𝛽)+2𝑥𝑥1−𝛽𝛽𝐶𝐶+1]2
. 

 
The stationary point equation 𝜙𝜙1

′ (𝑥𝑥) = 0 has for 𝑥𝑥 > 0 
unique real solution 𝑥𝑥 = 1, and since 𝜙𝜙1

′ (𝑥𝑥) > 0 for 
0 < 𝑥𝑥 < 1 and 𝜙𝜙1

′ (𝑥𝑥) < 0 for 𝑥𝑥 > 1, the component 
function 𝜙𝜙1(𝑥𝑥) has maximum at 𝑥𝑥 = 1. Thus, due to (10), 
the relaxation spectrum has maximum at:  
 
 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 =

1
𝜏𝜏, 

 
and the maximal value of the spectrum: 
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 𝐻𝐻1,𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐻𝐻1(𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚; 𝛽𝛽) = 𝐸𝐸𝐸𝐸 1
2𝜋𝜋

𝑠𝑠𝑠𝑠𝑠𝑠(𝛽𝛽𝛽𝛽)
1−𝑐𝑐𝑐𝑐𝑐𝑐(𝛽𝛽𝛽𝛽). (47) 

 
While 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 depends only on the relaxation time of the 
FMM, the maximum 𝐻𝐻1,𝑚𝑚𝑚𝑚𝑚𝑚  is expressed in terms of all 
model parameters, and in particular depend on the order 
parameter 𝛽𝛽. Based on the last expression in the right 
hand side of (47) we have: 
 
 𝑑𝑑

𝑑𝑑𝑑𝑑 𝐻𝐻1,𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐸𝐸𝐸𝐸 1
2𝜋𝜋

𝛽𝛽
𝑐𝑐𝑐𝑐𝑐𝑐(𝛽𝛽𝛽𝛽)−1. 

 
Hence, 𝑑𝑑

𝑑𝑑𝑑𝑑 𝐻𝐻1,𝑚𝑚𝑚𝑚𝑚𝑚 < 0 for any 0 < 𝛽𝛽 < 1. Thus the bigger 

is 𝛽𝛽, the lower is 𝐻𝐻1,𝑚𝑚𝑚𝑚𝑚𝑚  (47) – see Fig. 4. The greater is 
𝛽𝛽, the more restricted is the spectrum and the higher its 
maximum is. Thus, the order parameter 𝛽𝛽 characterizes 
the ‘height’ of the spectrum and its ‘width’.  
 

  
Fig. 4. Relaxation spectra of fractional Maxwell model 
for 𝛼𝛼 = 1, 𝐸𝐸 = 1 [𝑃𝑃𝑃𝑃], 𝜏𝜏 = 1 [𝑠𝑠]  
 
Theorem 2. Let 0 < 𝛽𝛽 < 𝛼𝛼 = 1. The relaxation spectrum 
𝐻𝐻1(𝑣𝑣; 𝛽𝛽) (45) has unique maximum for the frequency 
𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 = 1 𝜏𝜏⁄  equal to 𝐻𝐻1,𝑚𝑚𝑚𝑚𝑚𝑚  (47).  
 
 

FINAL REMARKS 
 

Two different cases, when the derivative order 𝛼𝛼 is 
equal to one and when it is not, have been considered 
separately because of the different mathematical formula 
and properties of relaxation spectrum, especially its 
boundedness and monotonicity. It has been proved that 
the relaxation spectrum monotonicity character is 
uniquely determined by the sign of the determinant 𝐷𝐷 of 
the cubic stationary point equation, which also uniquely 
determines the number and types of its roots. The 
analytical formulas for the local minimum and local 
maximum of the spectrum have been given. Also, some 
necessary conditions for the local extrema existence and 
sufficient conditions for the monotonic convex decreasing 
character of the spectrum have been derived in the form 
of useful simple inequalities expressed directly in terms of 

the FMM parameters, which do not require the 
determinant computation, and thus could be used to 
simplify the analysis.  

In the special case of order 𝛼𝛼 = 1 it has been proved 
that the greater the maximum density of spectrum is, the 
lower the 𝛽𝛽 parameter is. In this case the maximum 
density of spectrum is independent on other FMM 
parameters. The analysis of the influence of FMM 
parameters on the spectrum maximum will be the subject 
of future research. In many issues of the dynamical 
properties the analysis of  relaxation spectrum properties 
plays an important role, thus the investigations are useful 
wherever the determination of mechanical properties of 
rheological materials [11,17,20,25] is important from a 
cognitive and engineering point of view. 
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 𝐻𝐻1,𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐻𝐻1(𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚; 𝛽𝛽) = 𝐸𝐸𝐸𝐸 1
2𝜋𝜋

𝑠𝑠𝑠𝑠𝑠𝑠(𝛽𝛽𝛽𝛽)
1−𝑐𝑐𝑐𝑐𝑐𝑐(𝛽𝛽𝛽𝛽). (47) 

 
While 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 depends only on the relaxation time of the 
FMM, the maximum 𝐻𝐻1,𝑚𝑚𝑚𝑚𝑚𝑚  is expressed in terms of all 
model parameters, and in particular depend on the order 
parameter 𝛽𝛽. Based on the last expression in the right 
hand side of (47) we have: 
 
 𝑑𝑑

𝑑𝑑𝑑𝑑 𝐻𝐻1,𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐸𝐸𝐸𝐸 1
2𝜋𝜋

𝛽𝛽
𝑐𝑐𝑐𝑐𝑐𝑐(𝛽𝛽𝛽𝛽)−1. 

 
Hence, 𝑑𝑑

𝑑𝑑𝑑𝑑 𝐻𝐻1,𝑚𝑚𝑚𝑚𝑚𝑚 < 0 for any 0 < 𝛽𝛽 < 1. Thus the bigger 

is 𝛽𝛽, the lower is 𝐻𝐻1,𝑚𝑚𝑚𝑚𝑚𝑚  (47) – see Fig. 4. The greater is 
𝛽𝛽, the more restricted is the spectrum and the higher its 
maximum is. Thus, the order parameter 𝛽𝛽 characterizes 
the ‘height’ of the spectrum and its ‘width’.  
 

  
Fig. 4. Relaxation spectra of fractional Maxwell model 
for 𝛼𝛼 = 1, 𝐸𝐸 = 1 [𝑃𝑃𝑃𝑃], 𝜏𝜏 = 1 [𝑠𝑠]  
 
Theorem 2. Let 0 < 𝛽𝛽 < 𝛼𝛼 = 1. The relaxation spectrum 
𝐻𝐻1(𝑣𝑣; 𝛽𝛽) (45) has unique maximum for the frequency 
𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 = 1 𝜏𝜏⁄  equal to 𝐻𝐻1,𝑚𝑚𝑚𝑚𝑚𝑚  (47).  
 
 

FINAL REMARKS 
 

Two different cases, when the derivative order 𝛼𝛼 is 
equal to one and when it is not, have been considered 
separately because of the different mathematical formula 
and properties of relaxation spectrum, especially its 
boundedness and monotonicity. It has been proved that 
the relaxation spectrum monotonicity character is 
uniquely determined by the sign of the determinant 𝐷𝐷 of 
the cubic stationary point equation, which also uniquely 
determines the number and types of its roots. The 
analytical formulas for the local minimum and local 
maximum of the spectrum have been given. Also, some 
necessary conditions for the local extrema existence and 
sufficient conditions for the monotonic convex decreasing 
character of the spectrum have been derived in the form 
of useful simple inequalities expressed directly in terms of 

the FMM parameters, which do not require the 
determinant computation, and thus could be used to 
simplify the analysis.  

In the special case of order 𝛼𝛼 = 1 it has been proved 
that the greater the maximum density of spectrum is, the 
lower the 𝛽𝛽 parameter is. In this case the maximum 
density of spectrum is independent on other FMM 
parameters. The analysis of the influence of FMM 
parameters on the spectrum maximum will be the subject 
of future research. In many issues of the dynamical 
properties the analysis of  relaxation spectrum properties 
plays an important role, thus the investigations are useful 
wherever the determination of mechanical properties of 
rheological materials [11,17,20,25] is important from a 
cognitive and engineering point of view. 
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Abstract. The paper presents the results of 
measurement of the basic physical properties of 
black turnip and the results of studies on the impact 
of sampling site on the textural properties of its pulp. 
Selected texture indices, i.e. hardness, elasticity, 
cohesiveness and chewiness, were determined using 
the TPA double compression test. The tests were 
carried out on samples taken from well-defined root 
layers (upper layer, middle layer, lower layer) and 
zones (A, B, C) of black turnip, because of its 
structural heterogeneity. The samples were 
compressed at the longitudinal and transverse 
direction of the fibers relative to the compressing 
device movement. The results obtained were 
statistically analyzed using the Statistica 10.0 
program. The research has shown that the site of 
sampling and the direction of fiber positioning have 
a significant impact on the value of all the black 
turnip texture parameters. 
Key words: black turnip, physical properties, 
sampling site. 
 
 

INTRODUCTION 
 

The processing of fruit and vegetables is an 
important sector of food economy in Poland. This 
sector is quite innovative in relation to products. 
More and more often attention is paid to new, tasty 
varieties or health promoting aspects of vegetables. 
The quality of the supplied raw materials is 
important for the processing enterprises, because 
they directly affect the quality of processed products 
[9, 29]. 

However, for the proper processing of the raw 
material it is necessary to precisely determine its 
mechanical properties. During the description of the 
mechanical characteristics of materials using 
strength tests, the compression test is most often 
used because it is the closest to the simulation of 
biting and chewing. Among many sets of the 
samples used in the compression tests, samples 
loaded between parallel plates, i.e. the texture profile 
analysis (TPA) test, is most often mentioned. 
Current methods of textural analysis, based on fairly 
technically advanced research instruments, allow for 
objective evaluation of the properties of the raw 
materials studied [11, 28, 34, 31, 2, 33]. 

The available data on the physical properties of 
raw materials, despite numerous scientific studies in 
this field, are still of limited value due to the 
heterogeneity of plant-based materials. Therefore, the 
characteristics of the raw material should take into 
account its geometric features, surface conditions, 
porosity, fiber orientation and the procedure of 
sample collection as well as a precise description of 
the process parameters. In addition, the description of 
the material should include comprehensive data on 
cultivation conditions, variety, moisture, maturity and 
pre-treatment [17, 4, 15]. 

Among the lists of publications and scientific 
works describing vegetable tests, mainly the 
mechanical properties of potato tubers, carrot roots 
and sugar beet are the object of broader analyzes and 
investigations [5, 13, 16]. There are occasional 
reports of the results of studies on commercial 
vegetables from the Brassica family. 


