PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of possibilities of spreading of bioaerosol from different technological objects in small sewage treatment plants

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Covid-19 pandemia increased the attention of the world community to air biocontamination. Sewage treatment plants (STPs) generate a bioaerosol during different technological operations. Research aimed to estimate the range of bioaerosol emission from different technological objects of 5 small STPs. Such knowledge is very important for risk assessment, monitoring programs and pollution limitation. The sedimentation method was used for the detection of mesophiles, psychrophiles, Escherichia coli, pigmented bacteria, Streptococcus faecalis, Pseudomonas fluorescens, and mold fungi. The highest level of psychrophiles and mold fungi (> 1000 cfu/m3) was detected in points located near activated sludge chambers, sludge thickening tanks, and secondary clarifiers. The mesophiles (>500 cfu/m3) and E. coli aren’t a normal component of air microflora, but were detected in all measurement points, especially near a pomp station (inflow), grit, activated sludge, sludge thickening chambers. At the points located at the leeward, the number of microorganisms was higher than in the windward. The research results indicate the necessity of constant monitoring of the STP impact on the air quality.
Rocznik
Strony
177--186
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
  • Assoc. Prof.; Department of Air Protection, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
  • Assoc. Prof.; Department of Air Protection, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
  • Assoc. Prof.; Department of Air Protection, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
Bibliografia
  • [1] Kozdrój J., Frączek K., Ropek D. (2019). Assessment of bioaerosols in indoor air of glasshouses located in a botanical garden. Building and Environment, 166, 106436. Doi.org/10.1016/j.buildenv.2019.106436.
  • [2] Ruiz-Gil T., Acuna J.J., Fujiyoshi S., Tanaka D., Noda J., Maruyama F., Jorquera M.A. (2020). Airborne bacterial communities of outdoor environments and their associated influencing factors. Environment International, 145, 106156. doi.org/10.1016/j.envint.2020.106156
  • [3] Brandl H., Fricker-Feer C., Ziegler D., Mandal J., Stephan R., Lehner A. (2013). Distribution and identification of culturable airborne microorganisms in a Swiss milk processing facility. J. Dairy Sci. 97, 240-246. http://dx.doi.org/ 10.3168/jds.2013-7028
  • [4] Lee B. U. (2011). Life comes from air: A short review on bioaerosol control. Aerosol Air Qual. Res., 11, 921-927. Doi: 10.4209/aaqr.2011.06.0081
  • [5] Wijnand E., H., Dick C. D., Green B.J. (2012). Bioaerosol exposure assessment in the workplace: The past, present and recent advances. J. Environ. Monit. 14, 334-339. Doi: :10.1039/c2em10717a.
  • [6] Arora S., Nag A., Sethi J., Rajvanshi J., Saxena S., Shrivastava S. K., Gupta A.B. (2020). Sewage surveillance for the presence of SARS-CoV-2 genome as a useful wastewater based epidemiology (WBE) tracking tool in India. Water Science & Technology, 82(12), 10717a. Doi: 10.2166/wst.2020.540
  • [7] Li X., Chen H., Yao M. (2020). Microbial emission levels and diversities from different land use types. Environment International, 143, 105988. Doi.org/10.1016/j.envint.2020.105988
  • [8] Medema G., Heijnen L., Elsinga G., Italiaander R., Brouwer A. (2020). Presence of SARS-Coronavirus‑2 RNA in Sewage and Correlation with Reported COVID-19 Prevalence in the Early Stage of the Epidemic in The Netherlands. Environ. Sci. Technol. Lett. 7, 511−516. Doi.org/10.1021/acs.estlett.0c00357
  • [9] Sharif S., Ikram A., Khurshid A., Salman M., Mehmood N., Arshad Y., Ahmed J., Safdar R.M., Rehman L., Mujtaba G., Hussain J., Ali J., Angez M., Alam M.M., Akthar R., Malik M.W., Baig M.Z.I., Rana M.S., Usman M., Ali M.Q., Ahad A., Badar N., Umair M., TamimS., Ashraf A., Tahir F., Ali N. (2021). Detection of SARs-CoV-2 in wastewater using the existing environmental surveillance network: A potential supplementary system for monitoring COVID-19 transmission. PLOS ONE, 16(6), e0249568. Doi.org/10.1371/journal.pone.0249568
  • [10] Li J., Zhou L., Zhang X., Xu C., Dong L., Yao M. (2016). Bioaerosol emissions and detection of airborne antibiotic resistance genes from a wastewater treatment plant. Atmospheric Environment, 124, 404-412. Doi.org/10.1016/j.atmosenv.2015.06.030
  • [11] Polish Standards (PN-89 / Z-04111 / 01: 1989
  • [12] Polish Standards (PN-89 / Z-04111 /02: 1989
  • [13] Polish Standards (PN-89 / Z-04111 /03: 1989
  • [14] Grisoli, P.; Rodolfi, M.; Villani, S.; Grignani, E.; Cottica, D.; Berri, A.; Picco, A.; Dacarro, C. (2009). Assessment of airborne microorganism contamination in an industrial area characterized by an open composting facility and a wastewater treatment plant. Environ. Res., 109, 135-142. Doi:10.1016/j.envres.2008.11.001
  • [15] Grisoli, P., Albertoni M, Rodolf M. (2019). Application of Airborne Microorganism Indexes in Offices, Gyms, and Libraries. Appl. Sci., 9, 1101. Doi:10.3390/app9061101
  • [16] Haas D., Kriso A., Fritz T., Galler H., Habib J., Ilieva M., Kropsch M., Ofner-Kopeinig P., Stonitsch M., Strasser A., Zentner E., Reinthaler F.F. (2020). Background Concentrations of Cultivable, Mesophilic Bacteria and Dust Particles in the Air in Urban, Rural and Mountain Regions. Int. J. Environ. Res. Public Health, 17, 9572. Doi:10.3390/ijerph17249572
  • [17] Ramesh C., Vinithkumar N.V., Kirubagaran R., Venil C.K., Dufossé L. (2019). Multifaceted Applications of Microbial Pigments: Current Knowledge, Challenges and Future Directions for Public Health Implications. Microorganisms, 7, 186. Doi:10.3390/microorganisms7070186
  • [18] Duan H., Chai T., Liu J., Zhang X., Qi C., Jing G., Wang Y., Cai Y., Miao Z., Yao M., Schlenker G. (2009). Source identification of airborne Escherichia coli of swine house surroundings using ERIC-PCR and REP-PCR. Environmental Research., 109, 511-517. Doi:10.1016/j.envres.2009.02.014
  • [19] Ginn O, Rocha-Melogno L., Bivins A., Lowry S., Cardelino M., Nichols D., Tripathi S., Soria F., Andrade M., Bergin M., Deshusses M.A., Brown J. (2021). Detection and quantification of enteric pathogens in aerosols near uncontained fecal waste streams in cities with poor sanitation. medRxiv. Doi: https://doi.org/10.1101/2021.02.14.21251650
  • [20] Lin T-H., Chiang C-F., Lin S-T., Tsai C-T. (2016). Effects of Small-Size Suspended Solids on the Emission of Escherichia coli from the Aeration Process of Wastewater Treatment. Aerosol and Air Quality Research, 16, 2208-2215. Doi: 10.4209/aaqr.2015.04.0232
  • [21] Nag R., Monahan C., Whyteb P., Markey B.K., O'Flaherty V., Bolton D., Fenton O., Richards K.G., Cumminsa E. (2021). Risk assessment of Escherichia coli in bioaerosols generated following land application of farmyard slurry. Science of the Total Environment, 791, 148189. Doi.org/10.1016/j.scitotenv.2021.148189
  • [22] Michałkiewicz M., Kruszelnicka I., Ginter-Kramarczyk D., Mizerna-Nowotna P. (2016). Uciążliwość odorowa i mikrobiologiczna oczyszczalni ścieków - studium przypadku (Odor and microbiological nuisance in a sewage treatment plant - a case study). Ochrona Środowiska, 38(3), 41-48. http://www.os.not.pl/docs/czasopismo/2016/3-2016/Michalkiewicz_3-2016.pdf
  • [23] Breza-Boruta B. (2012). Bioaerosols of the municipal waste landfill site as a source of microbiological air pollution and health hazard. Ecol Chem Eng A., 19(8), 851-862. Doi: 10.2428/ecea.2012.19(08)083
  • [24] Breza-Boruta B. (2010). Ocena mikrobiologicznego zanieczyszczenia powietrza na terenie oczyszczalni ścieków (Assessment of microbiological air pollution in the sewage treatment plant). Woda-ŚrodowiskoObszary Wiejskie, 10(3), 49-57.
  • [25] Li P., Li L.., Yang K., Zheng T., Liu J., Wang Y. (2021). Characteristics of microbial aerosol particles dispersed downwind from rural sanitation facilities: Size distribution, source tracking and exposure risk. Environmental Research, 195, 110798. Doi.org/10.1016/j.envres.2021.110798
  • [26] Xu G., Han Y., Li L., Liu J. (2018). Characterization and source analysis of indoor/outdoor culturable airborne bacteria in a municipal wastewater treatment plant. J Environ Sci, 74, 71-78. Doi: 10.1016/j.jes.2018.02.007
  • [27] Franchitti E., Pascale E., Fea E., Anedda E., Traversi D. (2020). Methods for Bioaerosol Characterization: Limits and Perspectives for Human Health Risk Assessment in Organic Waste Treatment. Atmosphere, 11(5), 452. Doi.org/10.3390/atmos11050452
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b4a100f2-f7f6-4f0f-8e3f-7f70e6d1c456
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.