PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of 3D Printing Parameters by FDM Method on the Mechanical Properties of Manufactured Parts

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The manufacturing of machine parts with additive methods (AM) is of significant importance in modern industry. The development of 3D printers and all 3D printing technology is impressive. The ability to make parts quickly and relatively cheaply with AM gives excellent opportunities in terms of e.g., shortening the production preparation time. Proper selection of printing parameters allows for a significant reduction of printing time and production costs. Unfortunately, this has different consequences. Due to the course of the printing process and the parameters that can be set, the same product produced with different parameters has different mechanical properties - mainly different strength. This paper presents the impact of 3D printing parameters on the strength of manufactured parts. Strength tests were carried out on samples made in accordance with DIN EN ISO 527-1:2019. The samples were printed in technology FDM from three different materials, i.e. PLA (completely biodegradable), PETG (recycled material), and Smart ABS (material with minimal shrinkage). The tested samples were made in three levels of print filling - 10%, 30%, and 60% and with different types of filling - line, mesh, and honeycomb. A series of static tensile tests were carried out to determine the strength of the samples produced with different printing parameters. Thanks to the obtained test results, it is possible to select the optimal printing parameters depending on the forecast load of the manufactured parts.
Słowa kluczowe
Twórcy
  • Mechanical Engineering Faculty, Lublin University of Technology, ul. Nadbystrzycka 38D, 20-618 Lublin, Poland
  • Universidad Autónoma de Ciudad Juárez, Instituto de Ingeniería y Tecnología, Ciudad Juárez, Chihuahua, México
  • Fundamentals of Science Faculty, Lublin University of Technology, ul. Nadbystrzycka 38D, 20–618 Lublin, Poland
  • Mechanical Engineering Faculty, Lublin University of Technology, ul. Nadbystrzycka 38D, 20–618 Lublin, Poland
Bibliografia
  • 1. Slotwinski J., Garboczi E., Stutzman P., Ferraris C., Watson S., Peltz M. Characterization of Metal Powders Used for Additive Manufacturing.
  • 2. Bastarrchea A., Estrada Q., Zubrzycki J., TorresArguelles V., Reynoso E., Rodriguez-Mendez A., et al. Mechanical design of a low-cost ABS hand prosthesis using the finite element method. Journal of Physics. 2021; 1736(1): 12.
  • 3. Healy A.V., Fuenmayor E., Doran P., Geever L.M., Higginbotham C.L., Lyons J.G. Additive Manufacturing of Personalized Pharmaceutical Dosage Forms via Stereolithography. Pharmaceutics. 2019; 11(12).
  • 4. Robles-Martinez P., Xu X., Trenfield J.F., Awad A., Goyanes A., Telford R., et al. 3D Printing of a Multi-Layered Polypill Containing Six Drugs Using a Novel Stereolithographic Method. Pharmaceutics [Internet]. 2019; 11(6).
  • 5. Noor N., Shapira A., Edri R., Gal I., Wertheim L., Dvir T. 3D Printing of Personalized Thick and Perfusable Cardiac Patches and Hearts. Advanced Science. 2019; 6(11): 1900344.
  • 6. Das S., Bourell D.L., Babu S.S. Metallic materials for 3D printing. MRS Bulletin. 2016; 41(10): 729–741.
  • 7. Singh S., Choudhury D., Yu F., Mironov V., Naing M.W. In situ bioprinting – Bioprinting from benchside to bedside? Acta biomaterialia [Internet]. 2020; 101.
  • 8. Willemsen K., Nizak R., Noordmans H..J, Castelein R.M., Weinans H., Kruyt M.C. Challenges in the design and regulatory approval of 3D-printed surgical implants: a two-case series. The Lancet Digital health. 2019; 1(4): 9.
  • 9. Szulżyk-Cieplak J., Duda A., Sidor B. 3D printers – new possibilities in education. Adv Sci Technol Res J. 2014; 8(24): 96–101.
  • 10. Weller C., Kleer R., Piller F.T. Economic implications of 3D printing: Market structure models in light of additive manufacturing revisited. International Journal of Production Economics. 2015; 164: 43–56.
  • 11. Aljohani W., Ullah M., Zhang X., Yang G. Bioprinting and its applications in tissue engineering and regenerative medicine. International Journal of Biological Macromolecules. 2018; 107: 261–275.
  • 12. Wichniarek R., Górski F., Kuczko W., Zawadzki P., Buń P. Dimensional Accuracy of Parts Manufactured by 3D Printing for Interaction in Virtual Reality. Adv Sci Technol Res J. 2017; 11(4): 279–285.
  • 13. Kratochvíl J., Sadílek M., Musil V., Pagáč M., Stančeková D. The effectiveness of strategies printing printer easy 3D maker. Adv Sci Technol Res J. 2018; 12(2): 197–205.
  • 14. Zhang Y., Wu L., Guo X., Kane S., Deng Y., Jung Y.G. Additive Manufacturing of Metallic Materials: A Review. J of Materi Eng and Perform. 2018; 27(1): 1–13.
  • 15. Revilla-León M., Sadeghpour M., Özcan M. An update on applications of 3D printing technologies used for processing polymers used in implant dentistry. Odontology [Internet]. 2020; 108(3).
  • 16. Matai I., Kaur G., Seyedsalehi A., McClinton A., Laurencin C.T. Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials. 2020; 226.
  • 17. Oberoi G., Nitsch S., Edelmayer M., Janjić K., Müller A.S., Agis H. 3D Printing-Encompassing the Facets of Dentistry. Frontiers in bioengineering and biotechnology. 2018; 6.
  • 18. Norman J., Madurawe R.D., Moore C.M., Khan M.A., Khairuzzaman A. A new chapter in pharmaceutical manufacturing: 3D-printed drug products. Advanced drug delivery reviews [Internet]. 2017; 108.
  • 19. Prater T., Werkheiser N., Ledbetter F., Timucin D., Wheeler K., Snyder M. 3D Printing in Zero G Technology Demonstration Mission: Complete Experimental Results and Summary of Related Material Modeling Efforts. The International journal, advanced manufacturing technology. 2019; 101(1–4): 391.
  • 20. ISO 527-1:2019 Plastics – Determination of tensile properties – Part 1: General principles.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b49fe2a7-510e-4f7b-aa8c-8f3a81f639fd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.