Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The symmetries of the minimal Φ4 theory on the lattice are systematically analyzed. We find that symmetry can restrict trajectories to subspaces, while their motions are still chaotic. The chaotic dynamics of autonomous Hamiltonian systems are discussed in relation to the thermodynamic laws. Possibilities of configurations with non-equal ideal gas temperatures in the steady state in Hamiltonian systems, are investigated, and examples of small systems in which the ideal gas temperatures are different within the system are found. The pairing of local (finite-time) Lyapunov exponents are analyzed, and their dependence on various factors, such as the energy of the system, the characteristics of the initial conditions are studied and discussed. We find that for the Φ4 theory, higher energies lead to faster pairing times. We also find that symmetries can impede the pairing of local Lyapunov exponents and the convergence of Lyapunov exponents.
Rocznik
Tom
Strony
83--95
Opis fizyczny
Bibliogr. 35 poz., rys.
Twórcy
autor
- Research and Education Center for Natural Sciences and Hiyoshi Department of Physics Keio University, Yokohama 223-8521, Japan
Bibliografia
- [1] R.C. Hilborn, Chaos and nonlinear dynamics, Oxford University Press (New York, 1994).
- [2] M. Tabor, Chaos and Integrability in Nonlinear Dynamics, John Wiley & Sons (New York, 1989).
- [3] W.G. Hoover, C.G. Hoover, Simulation and Control of Chaotic Nonequilibrium Systems, World Scientific Publishing Company (Singapore, 2015), and references therein.
- [4] Wm.G. Hoover, C.G. Hoover, Instantaneous Pairing of Lyapunov Exponents in Chaotic Hamiltonian Dynamics and the 2017 Ian Snook Prizes, Computational Methods in Science and Technology 23, 73 (2017).
- [5] K. Aoki, D. Kusnezov, Bulk properties of anharmonic chains in strong thermal gradients: non-equilibrium Φ4 theory, Phys. Lett. A 265, 250 (2000); K. Aoki, D. Kusnezov, Non-Equilibrium Statistical Mechanics of Classical Lattice Φ4 Field Theory, Ann. Phys. 295, 50 (2002).
- [6] B. Hu, B. Li, H. Zhao, Heat conduction in one-dimensional nonintegrable systems, Phys. Rev. E 61, 3828 (2000).
- [7] W.G. Hoover, K. Aoki, Order and chaos in the one-dimensional Φ4 model: N-dependence and the Second Law of Thermodynamics, Commun. Nonlinear. Sci. Numer. Simulat. 49, 192 (2017).
- [8] Y. Ohnuki, S. Kamefuchi, Some General Properties of Para-Fermi Field Theory, Phys. Rev. 170, 1279 (1968).
- [9] F. Wilczek, Quantum Mechanics of Fractional-Spin Particles, Phys. Rev. Lett. 49, 957 (1982).
- [10] L.Dixon, J.A.Harvey, C.Vafa, E.Witten, Strings on Orbifolds, Nuc. Phys. B 261, 678 (1985).
- [11] G. ’t Hooft, A Property of Electric and Magnetic Flux in Nonabelian Gauge Theories, Nucl. Phys. B 153, 141 (1979).
- [12] R. Rosenberg, On Nonlinear Vibrations of Systems with Many Degrees of Freedom, Adv. Appl. Mech., 9, 155 (1966).
- [13] S.W. Shaw, C. Pierre, Non-linear normal modes and invariant manifolds, Journal of Sound and Vibration 150, 170 (1991), Normal Modes for Non-Linear Vibratory Systems, ibid. 164, 85 (1993).
- [14] K.W. Sandusky, J.B. Page, Interrelation between the stability of extended normal modes and the existence of intrinsic localized modes in nonlinear lattices with realistic potentials, Phys. Rev. B 50, 866 (1994).
- [15] S. Flach, Tangent bifurcation of band edge plane waves, dynamical symmetry breaking and vibrational localization, Physica D 91, 223 (1996).
- [16] A.F. Vakakis, Non-linear normal modes (NNMs) and their applications in vibration theory: an overview, Mech. Sys. Sig.Proc. 11, 3 (1997); Y.V. Mikhlin, K.V. Avramov, Nonlinear Normal Modes for Vibrating Mechanical Systems. Review of Theoretical Developments, Appl. Mech. Rev 63, 060802 (2011).
- [17] T. Bountis, G. Chechin, V. Sakhnenko, Discrete symmetry and stability in hamiltonian dynamics, Int. J. Bif. Chaos 21, 1539 (2011).
- [18] K. Aoki, Stable and unstable periodic orbits in the onedimensional lattice Φ4 theory, Phys. Rev. E94, 042209 (2016).
- [19] S. Nosé, J. Chem. Phys. 81, 511 (1984); A unified formulation of the constant temperature molecular dynamics methods, Mol. Phys. 52, 255 (1984).
- [20] Wm.G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Phys. Rev. A 31,1695 (1985).
- [21] L.D. Landau, E.M. Lifshitz, Statistical Physics, Butterworth-Heinemann (Burlington, 1980).
- [22] J. Delhommelle, D.J. Evans, Configurational temperature thermostat for fluids undergoing shear flow: application to liquid chlorine, Mol. Phys. 99, 1825 (2001).
- [23] K.P. Travis, C. Braga, Configurational temperature control for atomic and molecular systems, J. Chem. Phys. 128, 014111 (2008).
- [24] F. Reif, Fundamentals of Statistical and Thermal Physics, Waveland Press (Long Grove, 2009).
- [25] K. Aoki, D. Kusnezov, Violations of Local Equilibrium and Linear Response in Classical Lattice Systems, Phys. Lett. A 309, 377 (2003).
- [26] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd Edition, Cambridge University Press (New York, 2007).
- [27] Boost libraries, http://www.boost.org/.
- [28] I. Shimada, T. Nagashima, A Numerical Approach to Ergodic Problem of Dissipative Dynamical Systems, Prog. Theor. Phys. 61, 1605 (1979).
- [29] G. Benettin, L. Galgani, A. Giorgilli, J. Strelcyn, Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: Theory Meccanica 15, 9 (1980); Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; A method for computing all of them. Part 2: Numerical application ibid. 15, 21 (1980).
- [30] H.A. Posch, W.G. Hoover, Lyapunov instability of dense Lennard-Jones fluids, Phys. Rev. A38, 473 (1988).
- [31] We thank the referee for the insight on this point.
- [32] W.G. Hoover, private communication.
- [33] V. Oseledets, A multiplicative ergodic theorem. Characteristic Lyapunov, exponents of dynamical systems, Tr. Mosk. Mat. Obs. 19, 179 (1968).
- [34] D. Ruelle, Ergodic theory of differentiable dynamical systems, Publ. Math. IHES 50, 275 (1979).
- [35] F. Ginelli, H. Chaté, R. Livi, A. Politi, Covariant Lyapunov vectors, J. Phys. A: Math. Theor. 46, 254005 (2013).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b49dcf0c-350d-4ee6-b858-e1f0d926f727