PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Surface layer desalination of the bays on the east coast of Novaya Zemlya identified by shipboard and satellite data

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study examined the influences of continental and island river runoff as well as glacial meltwater runoff on the water surface layers of the Kara Sea in different bays on the eastern coast of Novaya Zemlya, an archipelago off the coast of Russia. High-resolution satellite and shipboard data obtained in 2015 were used to determine the sources of desalination (glacial meltwaters and river waters), which can be distinguished by the type of correlation (positive, negative, or none) seen between salinity and the coloured dissolved organic matter fluorescencje intensity. Examples of the various situations that can occur in the bays are provided and discussed.
Czasopismo
Rocznik
Strony
68--77
Opis fizyczny
Bibliogr. 46 poz., mapa, tab., wykr.
Twórcy
  • Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia
  • Moscow Institute of Physics and Technology, Moscow Region, Russia
  • Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia
Bibliografia
  • [1] Amon, R. M. W., 2003. The role of dissolved organic matter for the organic carbon cycle in the Arctic Ocean. In: Stein, R., MacDonald, R. (Eds.), The Organic Carbon Cycle in the Arctic Ocean. Springer, Berlin, 83-99, http://dx.doi.org/10.1007/978-3-642-18912-8_4.
  • [2] Belyaev, N. A., Peresypkin, V. I., Ponyaev, M. S., 2010. The organic carbon in the water, the particulate matter, and the upper layer of the bottom sediments of the west Kara Sea. Oceanology 50 (5), 706-715, http://dx.doi.org/10.1134/S0001437010050085.
  • [3] Bröder, L., Tesi, T., Salvadó, J. A., Semiletov, I. P., Dudarev, O. V., Gustafsson, Ö., 2016. Fate of terrigenous organic matter across the Laptev Sea from the mouth of the Lena River to the deep sea of the Arctic interior. Biogeosciences 13 (17), 5003-5019, http://dx.doi.org/10.5194/bg-13-5003-2016.
  • [4] Burenkov, V. I., Goldin, Y. A., Artem'ev, V. A., Sheberstov, S. V., 2010a. Optical characteristics of the Kara Sea derived from shipborne and satellite data. Oceanology 50 (5), 675-687, http://dx.doi.org/10.1134/S000143701005005X.
  • [5] Burenkov, V. I., Goldin, Y. A., Kravchishina, M. D., 2010b. The distribution of the suspended matter concentration in the Kara Sea in September 2007 based on ship and satellite data. Oceanology 50 (5), 798-805, http://dx.doi.org/10.1134/S0001437010050164.
  • [6] Burenkov, V. I., Vasilkov, A. P., 1994. Influence of river discharge on spatial-distribution of hydrological characteristics in the Kara Sea. Oceanology 34 (5), 652-661.
  • [7] Carmack, E. C., Yamamoto-Kawai, M., Haine, T. W., Bacon, S., Bluhm, B. A., Lique, C., Melling, H., Polyakov, I. V., Straneo, F., Timmermans, M. L., Williams, W. J., 2016. Freshwater and its role in the Arctic Marine System: sources, disposition, storage, export, and physical and biogeochemical consequences in the Arctic and global oceans. J. Geophys. Res. Biogeosci. 121 (3), 675-717, http://dx.doi.org/10.1002/2015JG003140.
  • [8] Coble, P. G., 2007. Marine optical biogeochemistry: the chemistry of ocean color. Chem. Rev. 107 (2), 402-418, http://dx.doi.org/10.1021/cr050350+.
  • [9] Coulson, S. J., Convey, P., Aakra, K., Aarvik, L., Ávila-Jiménez, M. L., Babenko, A., Biersma, E. M., Boström, S., Brittain, J. E., Carlsson, A. M., Christoffersen, K., 2014. The terrestrial and freshwater invertebrate biodiversity of the archipelagoes of the Barents Sea; Svalbard, Franz Josef Land and Novaya Zemlya. Soil Biol. Biochem. 68, 440-470, http://dx.doi.org/10.1016/j.soilbio.2013.10.006.
  • [10] Dai, M. H., Martin, J. M., 1995. First data on trace metal level and behaviour in two major Arctic river-estuarine systems (Ob and Yenisey) and in the adjacent Kara Sea, Russia. Earth Planet. Sci. Lett. 131 (3-4), 127-141.
  • [11] Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, D. P., Bechtold, P., 2011. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteor. Soc. 137 (656), 553-597, http://dx.doi.org/10.1002/qj.828.
  • [12] Demidov, A. B., Gagarin, V. I., Vorobieva, O. V., Makkaveev, P. N., Artemiev, V. A., Khrapko, A. N., Grigoriev, A. V., Sheberstov, S. V., 2018. Spatial and vertical variability of primary production in the Kara Sea in July and August 2016: the influence of the river plume and subsurface chlorophyll maxima. Polar Biol. 41 (3), 563-578, http://dx.doi.org/10.1007/s00300-017-2217-x.
  • [13] Drozdova, A. N., Patsaeva, S. V., Khundzhua, D. A., 2017. Fluorescence of dissolved organic matter as a marker for distribution of desalinated waters in the Kara Sea and bays of Novaya Zemlya archipelago. Oceanology 57 (1), 41-47, http://dx.doi.org/10.1134/S0001437017010039.
  • [14] Fichot, C. G., Kaiser, K., Hooker, S. B., Amon, R. M. W., Babin, M., Bélanger, S.,Walker, S., Benner, R., 2013. Pan-Arctic distributions of continental runoff in the Arctic Ocean. Sci. Rep. 3, 1053, http://dx.doi.org/10.1038/srep01053.
  • [15] Flint, M. V., 2010. Cruise 54th of the research vessel Akademik Mstislav Keldysh in the Kara Sea. Oceanology 50 (5), 637-642, http://dx.doi.org/10.1134/S0001437010050012.
  • [16] Glukhovets, D. I., Goldin, Y. A., 2014. Study of bio-optical characteristics of waters of the Kara Sea by using data of satellite and ship measurements. Curr. Probl. Remote Sens. Earth Space 11 (4), 346-350, http://jr.rse.cosmos.ru/article.aspx?id=1359&lang=eng.
  • [17] Goldin, Y. A., Shatravin, A. V., Levchenko, V. A., Ventskut, Y. I., Gureev, B. A., Kopelevich, O. V., 2015. Analysis of spatial variability of fluorescent intensity of seawater in western part of the Black Sea. Fundam. Prikl. Gidrofiz 7 (1), 11-20.
  • [18] Gonçalves-Araujo, R., Granskog, M. A., Bracher, A., Azetsu-Scott, K., Dodd, P. A., Stedmon, C. A., 2016. Using fluorescent dissolved organic matter to trace and distinguish the origin of Arctic surface waters. Sci. Rep. 6, 33978, http://dx.doi.org/10.1038/srep33978.
  • [19] Gordon, H. R., Morel, A. Y., 2012. Springer Sci. & Business Media. Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review, vol. 4, http://dx.doi.org/10.1029/LN004.
  • [20] Granskog, M. A., Pavlov, A. K., Sagan, S., Kowalczuk, P., Raczkowska, A., Stedmon, C. A., 2015. Effect of sea-ice melt on inherent optical properties and vertical distribution of solar radiant heating in Arctic surface waters. J. Geophys. Res.-Oceans 120 (10), 7028-7039, http://dx.doi.org/10.1002/2015JC011087.
  • [21] Kowalczuk, P., Zabłocka, M., Sagan, S., Kuliñski, K., 2010. Fluorescence measured in situ as a proxy of CDOM absorption and DOC concentration in the Baltic Sea. Oceanologia 52 (3), 431-471, http://dx.doi.org/10.5697/oc.52-3.431.
  • [22] Kravchishina, M. D., Lein, A. Y., Sukhanova, I. N., Artem'ev, V. A., Novigatsky, A. N., 2015. Genesis and spatial distribution of suspended particulate matter concentrations in the Kara Sea during maximum reduction of the Arctic ice sheet. Oceanology 55 (4), 623-643, http://dx.doi.org/10.1134/S000143701503008X.
  • [23] Kubryakov, A., Stanichny, S., Zatsepin, A., 2016. River plume dynamics in the Kara Sea from altimetry-based lagrangian model, satellite salinity and chlorophyll data. Remote Sens. Environ. 176, 177-187, http://dx.doi.org/10.1016/j.rse.2016.01.020.
  • [24] Kuznetsova, O. A., Kopelevich, O. V., Sheberstov, S. V., Burenkov, V. I., Mosharov, S. A., Demidov, A. B., 2013. Assessment of chlorophyll concentration in the Kara Sea based on the data of satellite scanner MODIS-AQUA. Curr. Probl. Remote Sens. Earth Space 5, 21-31.
  • [25] Lee, Z., Carder, K. L., Mobley, C. D., Steward, R. G., Patch, J. S., 1998. Hyperspectral remote sensing for shallow waters. I. A semianalytical model. Appl. Opt. 37 (27), 6329-6338.
  • [26] Lisitzyn, A. P., Vinogradov, M. E., 1994. International high-altitude expedition in the Kara Sea during 49 cruise of R/V Dmitry Mendeleev. Oceanology 34 (5), 737-747.
  • [27] Lorenzen, C. J., 1966. A method for the continuous measurement of in vivo chlorophyll concentration. Deep Sea Res. Oceanogr. Abstracts 13 (2), 223-227.
  • [28] Makkaveev, P. N., Melnikova, Z. G., Polukhin, A. A., Stepanova, S. V., Khlebopashev, P. V., Chultsova, A. L., 2015. Hydrochemical characteristics of the waters in the western part of the Kara Sea. Oceanology 55 (4), 485-496, http://dx.doi.org/10.1134/S0001437010050061.
  • [29] Matsuoka, A., Boss, E., Babin, M., Karp-Boss, L., Hafez, M., Chekalyuk, A., Proctor, C. W., Werdell, P. J., Bricaud, A., 2017. Pan-Arctic optical characteristics of colored dissolved organic matter: tracing dissolved organic carbon in changing Arctic waters using satellite ocean color data. Remote Sens. Environ. 200, 89-101, http://dx.doi.org/10.1016/j.rse.2017.08.009.
  • [30] Morel, A., Gentili, B., 1993. Diffuse reflectance of oceanic waters. II. Bidirectional aspects. Appl. Opt. 32 (33), 6864-6879.
  • [31] Murray, C., Markager, S., Stedmon, C. A., Juul-Pedersen, T., Sejr, M. K., Bruhn, A., 2015. The influence of glacial melt water on biooptical properties in two contrasting Greenlandic fjords. Estuar. Coast. Shelf Sci. 163, 72-83, http://dx.doi.org/10.1016/j.ecss.2015.05.041.
  • [32] Nummelin, A., Ilicak, M., Li, C., Smedsrud, L. H., 2016. Consequences of future increased Arctic runoff on Arctic Ocean stratification, circulation, and sea ice cover. J. Geophys. Res. Oceans 121 (1), 617-637, http://dx.doi.org/10.1002/2015JC011156.
  • [33] Nummelin, A., Li, C., Smedsrud, L. H., 2015. Response of Arctic Ocean stratification to changing river runoff in a column model. J. Geophys. Res. Oceans 120 (4), 2655-2675, http://dx.doi.org/10.1002/2014JC010571.
  • [34] Osadchiev, A. A., Izhitskiy, A. S., Zavialov, P. O., Kremenetskiy, V. V., Polukhin, A. A., Pelevin, V. V., Toktamysova, Z. M., 2017. Structure of the buoyant plume formed by Ob and Yenisei river discharge in the southern part of the Kara Sea during summer and autumn. J. Geophys. Res. Oceans 122 (7), 5916-5935, http://dx.doi.org/10.1002/2016JC012603.
  • [35] Pelevin, V. V., Zavjalov, P. O., Belyaev, N. A., Konovalov, B. V., Kravchishina, M. D., Mosharov, S. A., 2017. Spatial variability of concentrations of chlorophyll a, dissolved organic matter and suspended particles in the surface layer of the Kara Sea in September 2011 from lidar data. Oceanology 57 (1), 165-173, http://dx.doi.org/10.1134/S0001437017010131.
  • [36] Politova, N. V., Shevchenko, V. P., Zernova, V. V., 2012. Distribution, composition, and vertical fluxes of particulate matter in Bays of Novaya Zemlya Archipelago, Vaigach Island at the end of summer. Adv. Meteorol. 2012, Art. ID 259316, 15 pp., http://dx.doi.org/10.1155/2012/259316.
  • [37] Polukhin, A. A., Makkaveev, P. N., 2017. Features of the continental runoff distribution over the Kara Sea. Oceanology 57 (1), 19-30, http://dx.doi.org/10.1134/S0001437017010143.
  • [38] Pozdnyakov, D. V., Korosov, A. A., Pettersson, L. H., Johannessen, O. M., 2005. MODIS evidences the river run-off impact on the Kara Sea trophy. Int. J. Remote Sens. 26 (17), 3641-3648, http://dx.doi.org/10.1080/01431160412331330266.
  • [39] Pugach, S. P., Pipko, I. I., Shakhova, N. E., Shirshin, E. A., Perminova, I. V., Gustafsson, Ö., Bondur, V. G., Ruban, A. S., Semiletov, I. P., 2018. Dissolved organic matter and its optical characteristics in the Laptev and East Siberian seas: spatial distribution and interannual variability (2003-2011). Ocean Sci. 14 (1), 17 pp., https://doi.org/10.5194/os-14-87-2018.
  • [40] Sagan, S., Darecki, M., 2017. Inherent optical properties and particulate matter distribution in summer season in waters of Hornsund and Kongsfjordenen, Spitsbergen. Oceanologia 60 (1), 65-75, http://dx.doi.org/10.1016/j.oceano.2017.07.006.
  • [41] Schlitzer, R., 2017. Ocean Data View. odv.awi.de.
  • [42] Sheberstov, S. V., 2015. System for batch processing of oceanographic satellite data. Curr. Probl. Remote Sens. Earth Space 12 (6), 154-161, in Russian), http://d33.infospace.ru/d33_conf/sb2015t6/154-161.pdf.
  • [43] Stedmon, C. A., Granskog, M. A., Dodd, P. A., 2015. An approach to estimate the freshwater contribution from glacial melt and precipitation in East Greenland shelf waters using colored dissolved organic matter (CDOM). J. Geophys. Res.-Oceans. 120, 1107-1117, http://dx.doi.org/10.1002/2014JC010501.
  • [44] Vazyulya, S. V., Kopelevich, O. V., Sheberstov, S. V., Artemiev, V. A., 2014. Satellite estimation of the coefficients of CDOM absorption and diffuse attenuation in the White and Kara seas. Curr. Probl. Remote Sens. Earth Space 11 (4), 31-41, http://jr.rse.cosmos.ru/article.aspx?id=1348&lang=eng.
  • [45] Zatsepin, A. G., Kremenetskiy, V. V., Kubryakov, A. A., Stanichny, S. V., Soloviev, D. M., 2015. Propagation and transformation of waters of the surface desalinated layer in the Kara Sea. Oceanology 55 (4), 450-460, http://dx.doi.org/10.1134/S0001437015040153.
  • [46] Zatsepin, A. G., Zavialov, P. O., Kremenetskiy, V. V., Poyarkov, S. G., Soloviev, D. M., 2010. The upper desalinated layer in the Kara Sea. Oceanology 50 (5), 657-667, http://dx.doi.org/10.1134/S0001437010050036.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b49d1e1d-df46-4ee6-98e0-0b6a43face35
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.