PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Estimation of acoustically induced refractive index perturbation in silicon and germanium slab for optical applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In-plane displacement field and refractive index variation for silicon and germanium in the presence of Lamb wave is estimated for optical applications. The required dispersion equation in a thin silicon and germanium plates is obtained using the method of potentials with boundary conditions involving the bulk and surface stress of the materials considered. The eigen-values thus obtained are used to compute the Lamb wave modes for the slab of silicon and germanium at same thickness. The fundamental anti-symmetric and symmetric plate modes and their overtones are observed due to confinement of acoustic energy within the slab thickness. In addition, the excited symmetric modes in silicon have longer wavelengths than those of germanium at a fixed frequency. Therefore, the refractive index modulation through the Lamb wave in silicon is always larger as compared to that of germanium. This refractive index modulation can be treated as periodic sinusoidal refractive index variation and may be considered as a tunable one-dimensional photonics crystal.
Czasopismo
Rocznik
Strony
491--500
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
autor
  • Department of Physics, Faculty of Science, Banaras Hindu University, Varanasi, UP 221005, India
autor
  • Department of Physics, Faculty of Science, Banaras Hindu University, Varanasi, UP 221005, India
autor
  • Department of Physics, Faculty of Science, Banaras Hindu University, Varanasi, UP 221005, India
autor
  • Department of Physics, Faculty of Science, Banaras Hindu University, Varanasi, UP 221005, India
Bibliografia
  • [1] PAVESI L., LOCKWOOD D., Silicon Photonics, Springer-Verlag, 2004.
  • [2] ANSHENG LIU, LING LIAO, RUBIN D., HAT NGUYEN, CIFTCIOGLU B., CHETRIT Y., IZHAKY N., PANICCIA M., High-speed optical modulation based on carrier depletion in a silicon waveguide, Optics Express 15(2), 2007, pp. 660–668.
  • [3] FENGNIAN XIA, ROOKS M., SEKARIC L., VLASOV Y., Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects, Optics Express 15(19), 2007, pp. 11934–11941.
  • [4] YEBO N.A., LOMMENS P., HENS Z., BAETS R., An integrated optic ethanol vapor sensor based on a silicon-on-insulator microring resonator coated with a porous ZnO film, Optics Express 18(11) 2010, pp. 11859–11866.
  • [5] YARIV A., YEH P., Optical Wave in Crystals, John Wiley & Sons, Canada, 2003.
  • [6] CHIH-MING LIN, WEI-CHENG LIEN, FELMETSGER V.V., HOPCROFT M.A., SENESKY D.G., PISANO A.P., AlN thin films grown on epitaxial 3C–SiC (100) for piezoelectric resonant devices, Applied Physics Letters 97(14), 2010, article 141907.
  • [7] FENG-CHIA HSU, JIN-CHEN HSU, TSUN-CHE HUANG, CHIN-HUNG WANG, PIN CHANG, Design of lossless anchors for microacoustic-wave resonators utilizing phononic crystal strips, Applied Physics Letters 98(14), 2011, article 143505.
  • [8] KUZNETSOV S.V., Lamb waves in anisotropic plates (review), Acoustical Physics 60(1), 2014, pp. 95 –103.
  • [9] CAMPBELL M., SHARP D.N., HARRISON M.T., DENNING R.G., TURBERFIELD A.J., Fabrication of photonic crystals for the visible spectrum by holographic lithography, Nature 404(6773), 2000, p. 53.
  • [10] ÖZBAY E., MICHEL E., TUTTLE G., BISWAS R., SIGALAS M., HO K.-M., Micromachined millimeter -wave photonic band-gap crystals, Applied Physics Letters 64(16), 1994, p. 2059.
  • [11] HOWELL I.R., CHENG LI, COLELLA N.S., ITO K., WATKINS J.J., Strain-tunable one dimensional photonic crystals based on zirconium dioxide/slide-ring elastomer nanocomposites for mechanochromic sensing, ACS Applied Materials and Interfaces 7(6), 2015, pp. 3641–3646.
  • [12] ISHIKAWA Y., WADA K., CANNON D.D., JIFENG LIU, HSIN-CHIAO LUAN, KIMERLING L.C., Strain-induced band gap shrinkage in Ge grown on Si substrate, Applied Physics Letters 82(13), 2003, pp. 2044–2046.
  • [13] MUNGUÍA J., BREMOND G., BLUET J.M., HARTMANN J.M., MERMOUX M., Strain dependence of indirect band gap for strained silicon on insulator wafers, Applied Physics Letters 93(10), 2008, article 102101.
  • [14] LAPIN A.D., Reflection of Lamb waves in a solid layer by a grating formed by mechanical resonators, Acoustical Physics 59(3), 2013, pp. 267–271.
  • [15] TEYSSIER J., SAENKO S.V., VAN DER MAREL D., MILINKOVITCH M.C., Photonic crystals cause active colour change in chameleons, Nature Communications 6, 2015, article 6368.
  • [16] SOREF R., Mid-infrared photonics in silicon and germanium, Nature Photonics 4(8), 2010, pp. 495–497.
  • [17] JIN-CHEN HSU, CHIANG-HSIN LIN, YUN-CHENG KU, TZY-RONG LIN, Photonic band gaps induced by submicron acoustic plate waves in dielectric slab waveguides, Optics Letters 38(20), 2013, pp. 4050–4053.
  • [18] TZY-RONG LIN, CHIANG-HSIN LI, JIN-CHEN HSU, Enhanced acousto-optic interaction in two-dimensional phoxonic crystals with a line defect, Journal of Applied Physics 113(5), 2013, article 053508.
  • [19] ROYER D., DIEULESAINT E., Elastic Waves in Solids I, Free and Guided Propagation, SpringerVerlag, Berlin, Heidelberg, 2000.
  • [20] MAKOV YU.N., Dispersive solutions of the linear wave equation for a nonabsorbing dispersion-free unbounded medium, Acoustical Physics 58(1), 2012, pp. 34–40.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b492f5ad-d492-4cfc-94af-542b3d0ba13f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.