PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling of HgCdTeLWIR detector for high operation temperature conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper reports on the photoelectrical performance of the long wavelength infrared (LWIR) HgCdTe high operating temperature (HOT) detector. The detector structure was simulated with commercially available software APSYS by Crosslight Inc. taking into account SRH, Auger and tunnelling currents. A detailed analysis of the detector performance such as dark current, detectivity, time response as a function of device architecture and applied bias is performed, pointing out optimal working conditions.
Słowa kluczowe
Rocznik
Strony
159--170
Opis fizyczny
Bibliogr. 43 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
autor
  • Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
autor
  • Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
autor
  • Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
  • Vigo System S.A., 129/133 Poznańska Str., 05-850 Ożarów Mazowiecki, Poland
Bibliografia
  • [1] Rogalski A. (2011). Infrared Detectors, second edition. CRC Press, Boca Raton.
  • [2] Martyniuk P., Rogalski A. (2013). HOT infrared detectors. Opto-Electron. Rev., 21(2), 239-257.
  • [3] Rogalski A. (2005). HgCdTe infrared detector material: history, status and outlook. Rep. Prog. Phys., 68, 2267-2336.
  • [4] Norton P. (2002). HgCdTe infrared detectors. Opto-Electron. Rev., 10, 159-174.
  • [5] Piotrowski J., Rogalski A. (2007). High-Operating-Temperature Infrared Photodetectors. Ed. SPIE, Bellingham, ISBN: 9780819465351.
  • [6] Piotrowski J. and Piotrowski A. (2011). Room temperature photodetectors. Mercury Cadmium Telluride: Growth, Properties and Applications edited by Peter Capper and James Garland, Willey, 513-537.
  • [7] Piotrowski J. (1972). A new method of obtaining CdHgTe thin films. Electr. Technol., 5, 87-89.
  • [8] Jezykowski R., Persak T., Piotrowski J. (1972). Uncooled photodetectors based on 8-12 µm HgCdTe layers. (in Polish), Biul. WAT, 5, 105-109.
  • [9] Grudzien M. and Piotrowski J. (1989). Monolithic optically immersed HgCdTe IR detectors. Infrared Phys., 29, 251-253.
  • [10] Ashley T. and Elliott C. T. (1985). Non-equilibrium mode of operation for infrared detection. Electron. Lett., 21, 451-452.
  • [11] Ashley T. and Elliott C. T. (1991). Operation and properties of narrow-gap semiconductor devices near room temperature using non-equilibrium techniques. Semicond. Sci. Technol., 6, C99-C105.
  • [12] Ashby M. K., Gordon N. T., Elliott C.T., Jones C.L., Maxey C. D., Hipwood L. and Catchpole R. (2003). Novel Hg1-xCdxTe device structure for higher operating temperature detectors. J. Electron. Mat. 32, 667-671.
  • [13] Maxey C.D., Jones C.L., Metcalfe N.E., Catchpole R.A., Gordon N.T., White A.M. and Elliot C.T. (2007). MOVPE growth of improved non-equlibrium MCT device structures for near ambient temperature heterodyne detectors. Proc. SPIE, 3122, 453-464.
  • [14] Adamiec K., Gawron W., Piotrowski J. (1997). Isothermal vapor phase epitaxy and RF sputtering for band gap engineered HgCdTe. Proc. SPIE, 3179, 251-255.
  • [15] Piotrowski J., Grudzień M., Nowak Z., Orman Z., Pawluczyk J., Romanis M. and Gawron W. (2000). Uncooled photovoltaic Hg1-xCdxTe LWIR detectors. Proc. SPIE, 4130, 175-184.
  • [16] Wenus J., Rutkowski J., Rogalski A. (2001). Two-Dimensional Analysis of Double-Layer Heterojunction HgCdTe Photodiodes. IEEE Transactions on Electron Devices, 48, 1326-1332.
  • [17] Rutkowski J., Wenus J. (2001). Inherent and additional limitations of HgCdTe heterojunction photodiodes. Opto-Electron. Rev., 9, 331-335.
  • [18] Wenus J., Rutkowski J., (2002). Influence of valence-band barriers in VLWIR HgCdTe P-on-n heterojunctions on photodiode parameters. Phys. Stat. Sol. (b), 229, 1093-1096.
  • [19] Kubiak L., Madejczyk P., Wenus J., Gawron W., Jóźwikowski K., Rutkowski J., Rogalski A. (2003). Status of HgCdTe photodiodes at the Military University of Technology. Opto-Electron. Rev., 11, 211-226.
  • [20] Piotrowski J., Gawron W., Orman Z., Pawluczyk J., Kłos K., Stępień D. and Piotrowski A. (2010). Dark currents, responsivity, and response time in graded gap HgCdTe structures. Proc. SPIE, 7660, 766031-766031-8.
  • [21] Klipstein P. (2008). XBn' barrier photodetectors for high sensitivity and high operating temperature infrared sensors. Proc. SPIE, 6940, 69402U-1-11.
  • [22] Ting D. Z., Hill C. J., Soibel A., Nguyen J., Keo S., Lee M. C., Mumolo J. M., Liu J. K., and Gunapala S. D. (2010). Antimonide-based barrier infrared detectors. Proc. SPIE, 7660, 76601R.
  • [23] Ting D. Z., Soibel A., Höglund L., Nguyen J., Hill C.J., Khoshakhlagh A., and Gunapala S. D. (2011). Type-II superlattice infrared detectors. In Semiconductors and Semimetals, edited by S. D. Gunapala, D. R. Rhiger, and C. Jagadish, Elsevier, Amsterdam.
  • [24] Rogalski A., Martyniuk P. (2006). InAs/GaInSb superlattices as a promising material system for third generation infrared detectors. Infrared Physics & Technol., 48, 39-52.
  • [25] Martyniuk P., Rogalski A. (2008). Comparison of performance of quantum dot and other types infrared photodetectors. Proc. SPIE, 6940, 694004.
  • [26] Martyniuk P., Wrobel J., Plis E., Madejczyk P., Kowalewski A., Gawron W., Krishna S., Rogalski A. (2012). Performance modeling of MWIR InAs/GaSb/B-Al0.2Ga0.8Sb type-II superlattice nBn detector. Semicond. Sci. Technol., 27, 055002.
  • [27] Wróbel J., Martyniuk P., Plis E., Madejczyk P., Gawron W., Krishna S., Rogalski A. (2012) Dark current modeling of MWIR type-II superlattice detectors. Proc. SPIE, 8353, 8353-16.
  • [28] Martyniuk P., Wróbel J., Plis E., Madejczyk P., Gawron W., Kowalewski A., Krishna S., Rogalski A. (2013). Modeling of mid wavelength infrared InAs/GaSb type II superlattice detectors. Optical Engineering 52, 061307-1-12.
  • [29] Gawron W., Piotrowski J. (1994). Practical near room-temperature, long-wavelength IR photovoltaic detectors. Opto-Electron. Rev., 2, 91-94.
  • [30] Piotrowski J., Gawron W. (1995). Extension of longwavelength IR photovoltaic detector operation to near room-temperatures. Infrared Physics & Technol., 36, 1045-1051.
  • [31] Piotrowski J., Gawron W. (1997). Ultimate performance of infrared photodetectors and figure of merit of detector material. Infrared Physics & Technol., 38, 63-68.
  • [32] www.vigo.com.pl
  • [33] Piotrowski A., Piotrowski J., Gawron W., Pawluczyk J., Pedzinska M. (2009). Extension of usable spectral range of Peltier cooled photodetectors. Acta Physica Polonica A, 116, 52-55.
  • [34] Piotrowski A., Piotrowski J., Gawron W., Pawluczyk J., Pedzinska M. (2009). Extension of spectral range of Peltier cooled photodetectors to 16 µm. Proc. SPIE, 7298, 729824.
  • [35] Stanaszek D., Piotrowski J., Piotrowski A., Gawron W., Orman Z., Paliwoda R., Brudnowski M., Pawluczyk J., Pedzińska M. (2009). Mid and long infrared detection modules for picosecond range measurements. Proc. SPIE, 7482, 74820M-74820M-11.
  • [36] Piotrowski J., Pawluczyk J., Piotrowski A., Gawron W., Romanis M., Kłos K. (2010). Uncooled MWIR and LWIR photodetectors in Poland. Opto-Electron. Rev., 18, 318-327.
  • [37] APSYS Macro/User’s Manual ver. 2011. (2011). Crosslight Software, Inc.
  • [38] Martyniuk P., Rogalski A. (2013). Modeling of MWIR HgCdTe complementary barrier HOT detector. Solid-State Electronics, 80, 96-104.
  • [39] Martyniuk P., Rogalski A. (2013). Theoretical modeling of MWIR thermoelectrically cooled nBn HgCdTe detector. Bull. Pol. Ac.: Tech., 61, 1.
  • [40] Capper P. P. (1994). Properties of Narrow Gap Cadmium-based Compounds, London, U.K.: Inst. Elect. Eng.
  • [41] Piotrowski A., Madejczyk P., Gawron W., Kłos K. Pawluczyk J., Rutkowski J., Piotrowski J., Rogalski A. (2007). Progress in MOCVD growth of HgCdTe heterostructures for uncooled infrared photodetectors. Infrared Physics & Technol. 49, 173-182.
  • [42] Madejczyk P., Piotrowski A, Kłos A., Gawron W., Rutkowski J., Rogalski A. (2010). Control of acceptor doping in MOCVD HgCdTe epilayers. Opto-Electron. Rev., 18, 271-276.
  • [43] Tennant W. E., Lee D., Zandian M., PiQuette E., Carmody M. (2008). MBE HgCdTe Technology: A very general solution to IR detection, described by „Rule07”, a very convenient heuristic. J. Electron. Mater., 37, 1406-1410.
Uwagi
EN
This paper has been done under financial support of the Polish National Science Centre, Project: DEC 2011/01/B/ST5/06283
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b488e081-75a5-4bec-a8db-cd931e20542d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.