PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

LNG tank in Świnoujście: nonlinear analysis of the tank dome elements behaviour

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the dome of a tank in the Świnoujście LNG terminal is analysed. Some of the rafter ribs at the connection with hangers were not mounted during construction of the tank dome. Therefore, it has become necessary to estimate its response, which has been done with the aid of some computational models of the dome, that have been created in the finite element method environment. Different local models are studied, aiming to recreate possible outermost conditions of the tank dome response, i.e. with or without composite action between steel and concrete parts of the tank dome. Static calculations with material and geometric nonlinearities are carried out on the computational models, enabling the creation of a load capacity envelope of the rafter with or without ribs. The obtained results are then used to decide if repair works need to be done and whether the missing ribs should be welded.
Rocznik
Tom
Strony
139--147
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
  • Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • 1. M. Alonso-Martinez, J.M. Adam, F.P. Alvarez-Rabanal and J.J. del Coz Díaz. ‘Wind turbine tower collapse due to flange failure: FEM and DOE analyses’, Engineering Failure Analysis. 2019, 104:932–49. doi: 10.1016/j.engfailanal.2019.06.045.
  • 2. X. Yang, X. Zeng, X. Wang, J. Berrila and X. Li. ‘Performance and bearing behavior of monopile-friction wheel foundations under lateral-moment loading for offshore wind turbines’, Ocean Engineering. 2019, 184:159–72. doi: 10.1016/j. oceaneng.2019.05.043.
  • 3. Z. Liu and L. Zhang. ‘A review of failure modes, condition monitoring and fault diagnosis methods for large-scale wind turbine bearings’, Measurement. 2020, 149:107002. doi: 10.1016/j.measurement.2019.107002.
  • 4. J. Chróścielewski, M. Miśkiewicz, Ł. Pyrzowski and K. Wilde. ‘Composite GFRP U-Shaped Footbridge’, Polish Maritime Research. 2017, 24:25–31. doi: 10.1515/pomr-2017-0017.
  • 5. Ł. Pyrzowski. ‘Testing contraction and thermal expansion coefficient of construction and moulding polymer composites’, Polish Maritime Research. 2018, 25:151–8. doi: 10.2478/pomr-2018-0036.
  • 6. N. Kharghani and C. Guedes Soares. ‘Experimental and numerical study of hybrid steel-FRP balcony overhang of ships under shear and bending’, Marine Structures. 2018, 60:15–33. doi: 10.1016/j.marstruc.2018.03.003.
  • 7. C.M. Wang, T.Y. Wu, Y.S. Choo, K.K. Ang, A.C. Toh, WY. Mao et al. ‘Minimizing differential deflection in a pontoon-type, very large floating structure via gill cells’, Marine Structures. 2006, 19:70–82. doi: 10.1016/j.marstruc.2006.06.002.
  • 8. Y.G. Cao and S.H. Zhang. ‘Failure analysis of a pinion of the jacking system of a jack-up platform’, Engineering Failure Analysis. 2013, 33:212–21. doi: 10.1016/j. engfailanal.2013.05.018.
  • 9. H. Qin, L. Mu, W. Tang and Z. Hu. ‘Numerical study on structural response of anti-sloshing baffles of different configurations in a sloshing tank considering hydroelasticity’, Ocean Engineering. 2019, 188:106290. doi: 10.1016/j. oceaneng.2019.106290.
  • 10. A. Tatsumi and M. Fujikubo. ‘Ultimate strength of container ships subjected to combined hogging moment and bottom local loads part 1: Nonlinear finite element analysis’, Marine Structures. 2020, 69:102683. doi: 10.1016/j. marstruc.2019.102683.
  • 11. Ł. Pyrzowski, M. Miśkiewicz and J. Chróścielewski. ‘The effect of fishing basin construction on the behaviour of a footbridge over the port channel’, Polish Maritime Research. 2017, 24:182–7. doi: 10.1515/pomr-2017-0037.
  • 12. M. Miśkiewicz, Ł. Pyrzowski, K. Wilde and O. Mitrosz. ‘Technical monitoring system for a new part of Gdańsk deepwater container terminal,’ Polish Maritime Research. 2017, 24:149–55. doi: 10.1515/pomr-2017-0033.
  • 13. M. Sondej, C. Ratnayake and M. Wójcik. ‘Economical and safe method of granular material storage in silos in offshore port terminals’, Polish Maritime Research. 2018, 25:62–8. doi: 10.2478/pomr-2018-0097.
  • 14. H. Jeong and W.J. Shim. ‘Calculation of boil-off gas (BOG) generation of KC-1 membrane LNG tank with high density rigid polyurethane foam by numerical analysis’, Polish Maritime Research. 2017, 24:100–14. doi: 10.1515/ pomr-2017-0012.
  • 15. M. Miśkiewicz, J. Chróścielewski, B. Sobczyk, Ł. Pyrzowski and K. Wilde. ‘Verification of rafter strenghtening in the gas tank roof ’, Proceedings of the 27th Conference on Structural Failures, Szczecin-Międzyzdroje. 2015, p. 253–60.
  • 16. Saipem S.P.A. Detailed design of roof framing for LNG tanks package LNG tank TK-2011 and TK-2012. 2012.
  • 17. Dassault Systèmes Simulia Corp. Abaqus 6.14 Documentation, Dassault Systèmes, Providence, RI, USA, 2014.
  • 18. M.G. Larson and F. Bengzon. The finite element method: Theory, implementation, and applications. vol. 10. Berlin, Heidelberg: Springer Berlin Heidelberg. 2013. doi: 10.1007/978-3-642-33287-6.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b48486fe-44b3-4bdd-b060-78c8ea9a99cd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.