Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper shows the results of researching the rollers used in belt conveyors working in a hard coal mine. Rollers should be characterized by low rotation resistance, which results in low power consumption of the propulsion unit. The tests conducted aimed to assess the technical condition of the new C-type rollers after several years of operation in a hard coal mine. The research was carried out from the new approach to the standard issues of roll testing and verification in a hard coal mine. Laboratory tests were combined with testing the entire belt conveyor in terms of power demand. The research was carried out for 3 years and it was monitored how the dynamic resistance of the working rollers changed and how this translates into the power demand consumed by the belt conveyor in a hard coal mine. The aim of the research was a new approach to the research of rollers used in conveyors operating in a mine.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
57--68
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
autor
- Silesian University of Technology; Krasińskiego 8, 40-019 Katowice, Poland
autor
- Silesian University of Technology; Krasińskiego 8, 40-019 Katowice, Poland
autor
- Silesian University of Technology; Krasińskiego 8, 40-019 Katowice, Poland
autor
- Silesian University of Technology; Krasińskiego 8, 40-019 Katowice, Poland
Bibliografia
- 1. Akparibo, A.R. & Normanyo, E. Application of resistance energy model to optimising electric power consumption of a belt conveyor system. International Journal of Electrical and Computer Engineering. 2020. Vol. 10. No. 3. P. 2861-2873.
- 2. Anath, K.N. & Rakesh, V. & Visweswarao. P.K. Design and Selecting Proper Conveyor Belt. International Journal of Advanced Engineering Technology. 2013. Vol. 4. No. 2. P. 43-49.
- 3. Bajda, M. & Król, R. Experimental Tests of Selected Constituents of Movement Resistance of the Belt Conveyors Used in the Underground Mining. Procedia Earth Planet Sci. 2015. No. 15. P. 702-711.
- 4. Furmanik, K. Analysis of load application on idler roller bearing of belt conveyor in different dynamic models. Journal of Friction and Wear. 2009. No. 30. P.142-147.
- 5. Furmanik, K. Possibilities of dimensional analysis implementation in the investigations of belt inclination resistance on conveyor drums. Mining Sciences. 2014. Vol. 21. No. 2. P. 25-32.
- 6. Gładysiewicz, L, & Król, R. & Kisielewski, W. & Kaszuba, D. Experimental determination of belt conveyors artificial friction coefficient. Acta Montanistica Slovaca. 2017. Vol. 22. No. 2. P. 206-214.
- 7. Gładysiewicz, L. & Kawalec, W. & Król, R. Selection of carry idlers spacing of belt conveyor taking into account random stream of transported bulk material. Maintenance and Reliability 2016. No. 18(1). P. 32-37.
- 8. Gładysiewicz, L. & Król, R. & Bukowski, J. Tests of belt conveyor resistance to motion. Maintenance and Reliability. 2011. No. 3(51). P. 17-25.
- 9. Hager, M. & Geesmann, F. Investigation of the resistance to motion of belt conveyors with a large mass flow. Surface Mining Braunkohle and Other Minerals. 2002. Vol. 54. No. 3. P. 208-224.
- 10. Hötte, S. & Daacke, S.V. & Schulz, L. & Overmeyer, L. & Wennekamp, T. The Way to DIN 22123-Indentation Rolling Resistance of Conveyor. Belts bulk solids handling. Germany. 2012. Vol. 32. No. 6. P. 48-52.
- 11. Król, R. Studies of The Durability of Belt Conveyor Idlers with Working Loads Taken into Account. World Multidisciplinary Earth Sciences Symposium (WMESS 2017). IOP Conf. Series: Earth and Environmental Science. 2017. P. 95-106.
- 12. Kumar, D. & Mandloi, R. K. Analysis and prospects of modification in belt conveyors. International Journal of Engineering Research and Applications (IJERA). 2013. Vol. 3. No. 1. P. 581-587.
- 13. Lodewijks, G. The next generation of low loss conveyor belts. Bulk Solids Handling. 2012. Vol. 32. No 1. P. 52-56.
- 14. Lu, Y. Investigation on indentation rolling resistance of belt conveyor based on Hertz contact theory compared with one-dimensional Winkler foundation. Advances in Mechanical Engineering. 2018. Vol. 10. No. 7. P. 1-9.
- 15. Marasova, D. & Andrejiová, M. & Grinčová, A. Continuous conveyor system evaluation based on the quality of conveyor belts. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM. 2018. Vol. 18. No. 1.3. P. 197-205.
- 16. Masaki, M.S. & Zhang, L. & Xia, X. A design approach for multiple drive belt conveyors minimizing life cycle costs. Journal of Cleaner Production. 2018. Vol. 201. P. 526-541.
- 17. Mclellan, B.C. & Corder, G.D. & Giurco, D.P. & Ishihara, K.N. Renewable energy in the minerals industry: a review of global potential. Journal of Cleaner Production. 2012. Vol. 32. P. 32-44.
- 18. Munzenberger, P. & Wheeler, C. Laboratory measurement of the indentation rolling resistance of conveyor belts. Measurement. 2016. Vol. 94. P. 909-918.
- 19. Munzenberger, P.J. & O’Shea, J.I. & Wheeler, C.A. A comparison of rubber stress relaxation models for conveyor belt indentation rolling resistance calculations. International Journal of Mechanics and Materials in Design. 2019. Vol. 15(1). P. 213-224.
- 20. O’Shea, J. & Wheeler, C. Dielectric relaxation studies of conveyor belt compounds to determine indentation rolling resistance. International Journal of Mechanics and Materials in Design. 2017. Vol. 13(4). P. 553-567.
- 21. Opasiak, T. & Peruń, G. Influence of construction the rollers C type on resistance of rotating driven system of the belt conveyor. Diagnostyka. 2016. Vol. 17. No. 1. P. 81-86.
- 22. Peruń, G. & Łazarz, B. & Opasiak, T. Opportunities to improve the efficiency of the “Gwarek 1200” belt conveyor. Transport Problems. 2020. Volume 15. Issue 4. Part 2. P. 215-227.
- 23. Roffey, P. Corrosion-Initiated Rotating Bending Fatigue Failure of a Fertilizer Conveyor Belt Head Roller. Journal of Failure Analysis and Prevention. 2015. Vol. 15. P. 190-199.
- 24. Rusiński, E. & Czmochowski, J. & Moczko, P. & Pietrusiak, D. Surface Mining Machines. Problems of Maintenance and Modernization. Springer. 2017. 179 p. ISBN: 978-3-319-47790-9.
- 25. Schützhold, J. & Benath, K. & Müller, V. & Hofmann, W. Design criteria for energy efficient belt conveyor drives. In: Proceedings of the 2014 International Symposium “Power Electronics, Electrical Drives, Automation and Motion”. SPEEDAM 2014. Ischia, Italy, 18-20 June 2014. IEEE Computer Society: Washington, DC, USA. P. 1256-1263.
- 26. Shihata, L. & Ebeid, S. Improved energy efficiency in troughed belt conveyors: Selected factors and effects. International Journal of Engineering and Technical Research. 2015. Vol. 3. No. 6. P. 174-180.
- 27. Wheeler, C. & Munzenberger, P. & Ausling, D. & Beh, B. How to design energy efficient belt conveyors. Bulk Solids Handling. 2015. Vol. 35. No. 6. P. 40-50.
- 28. Zhang, L. & Xia, X. Modeling and energy efficiency optimization of belt conveyors. Applied Energy. 2011. Vol. 88. No 9. P. 3061-3071.
- 29. Zhang, S. & Xia, X. Optimal control of operation efficiency of belt conveyor systems. Applied Energy. 2010. Vol. 87. No. 6. P. 1929-1937.
- 30. Živanić, D. & Ilanković, N. & Zuber, N. & Dokić, R. & Zdravković, N. & Zelić, A. The analysis of influential parameters on calibration and feeding accuracy of belt feeders. Maintenance and Reliability. 2021. Vol. 23(3). P. 413-421.
- 31. DIN22123 Conveyor Belts - Indentation Rolling Resistances of Conveyor Belts Related to Belt Width - Requirements, Testing.
- 32. PN-M-46606:2010. Przenośniki taśmowe - Krążniki. [In Polish: Belt conveyor - Rollers]. Warsaw: Polish Committee of Standardization. 40 p.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b480270a-aba5-474c-9b7c-07e5a5799b7c