Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Diagnostic ambiguity between chronic pulmonary diseases like asthma and Chronic Obstructive Pulmonary Disease (COPD) is very high, as they exhibit similar symptoms, which is the factor responsible for misdiagnosis, leading to heavy deaths every year. To prevent misdiagnosis, some useful work is highly required. This article presents the implementation of a computerized lung sound (LS) based method to classify asthma and COPD cases. The study is conducted on 80 asthma, 80 COPD and 80 healthy LSs. The LS denoising is carried out using empirical mode decomposition (EMD), Hurst analysis and spectral subtraction method. Wavelet entropy (WE) and wavelet packet energy (WPE) features of LS’s are extracted. Various classifiers like support vector machine (SVM), decision tree (DT), k-nearest neighbor (KNN) and discriminant analysis (DA) are accessed to classify healthy, COPD and asthma using WE and WPE features of LS to produce better outcomes. Using the proposed algorithm, the study discriminates between healthy, asthma and COPD cases based on LS with a considerable classification accuracy of 99.3% using the decision tree (DT) classifier. Thus, the study confirms the successful differentiation of asthma and COPD based on LS. Future endeavours will be based on the validation of this algorithm to distinguish the real-time LS data acquired from asthmatic and COPD patients.
Wydawca
Czasopismo
Rocznik
Tom
Strony
42--59
Opis fizyczny
Bibliogr. 67 poz., rys., tab., wykr.
Twórcy
autor
- Department of Biomedical Engineering, V.S.B. Engineering College, Karur, Tamil nadu-639111, India
autor
- Department of Pulmonary Medicine & TB, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
Bibliografia
- [1] Feigin VL, Roth GA, Naghavi M, Parmar P, Krishnamurthi R, Chugh S, et al. Global burden of stroke and risk factors in 188 countries, during 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet Neurol 2016;15 (9):913–24.
- [2] Beran D, Zar HJ, Perrin C, Menezes AM, Burney P. Burden of asthma and chronic obstructive pulmonary disease and access to essential medicines in low-income and middleincome countries. Lancet Respir Med 2015;3(2):159–70.
- [3] Ehteshami-Afshar S, Crothers K, Rodwin B, Bade B, Brandt C, Akgün KM. Does pulmonary subspecialty referral from primary care affect the adherence to vaccination recommendations in COPD patients? Respir Res 2021;22 (1):1–4.
- [4] Tzortzaki EG, Proklou A, Siafakas NM. Asthma in the elderly: can we distinguish it from COPD? J Allergy 2011;2011:1–7.
- [5] Cukic V, Lovre V, Dragisic D, Ustamujic A. Asthma and chronic obstructive pulmonary disease (COPD)–differences and similarities. Materia socio-medica 2012;24(2):100.
- [6] Nissen F, Morales DR, Mullerova H, Smeeth L, Douglas IJ, Quint JK. Concomitant diagnosis of asthma and COPD: a quantitative study in UK primary care. Br J Gen Pract 2018;68 (676):e775–82.
- [7] Sarkar M, Madabhavi I, Niranjan N, Dogra M. Auscultation of the respiratory system. Ann Thorac Med 2015;10(3):158. https://doi.org/10.4103/1817-1737.160831.
- [8] Bohadana A, Azulai H, Jarjoui A, Kalak G, Izbicki G. Influence of observer preferences and auscultatory skill on the choice of terms to describe lung sounds: a survey of staff physicians, residents and medical students. BMJ Open Respir Res 2020;7 (1):e000564. https://doi.org/10.1136/bmjresp-2020-000564.
- [9] Furman EG, Charushin A, Eirikh E, Malinin S, Sheludko V, Sokolovsky V, Furman G. The remote analysis of breath sound in covid-19 patients: A series of clinical cases. MedRxiv 2020.
- [10] Aviles-Solis JC, Jacome C, Davidsen A, Einarsen R, Vanbelle S, Pasterkamp H, Melbye H. Prevalence and clinical associations of wheezes and crackles in the general population: the Tromsø study. BMC Pulmonary Med 2019;19(1):1-1.
- [11] Bennett S, Bruton A, Barney A, Havelock T, Bennett M. The relationship between crackle characteristics and airway morphology in COPD. Respir Care 2015;60(3):412–21.
- [12] hui Huang Y, jun Meng S, Zhang Y, sheng Wu S, Zhang Y, wei Zhang Y, xiang Ye Y, feng Wei Q, gui Zhao N, ping Jiang J, ying Ji X. The respiratory sound features of COVID-19 patients fill gaps between clinical data and screening methods. MedRxiv 2020.
- [13] Yin H, Dong H. The problem of noise in classification: Past, current and future work. Proc. 2011 IEEE 3rd International Conference on Communication Software and Networks, 2011.
- [14] Akwei-Sekyere S. Powerline noise elimination in biomedical signals via blind source separation and wavelet analysis. PeerJ 2015;3:e1086.
- [15] Tian X, Li Y, Zhou H, Li X, Chen L, Zhang X. Electrocardiogram signal denoising using extreme-point symmetric mode decomposition and nonlocal means. Sensors 2016;16 (10):1584.
- [16] Leal A, Couceiro R, Chouvarda I, Maglaveras N, Henriques J, Paiva R, et al. Detection of different types of noise in lung sounds. Proc. 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2016.
- [17] Arjmandi MK, Pooyan M. An optimum algorithm in pathological voice quality assessment using wavelet-packetbased features, linear discriminant analysis and support vector machine. Biomed Signal Process Control 2012;7 (1):3–19.
- [18] Bollt EM, Skufca JD, McGregor SJ. Control entropy: A complexity measure for nonstationary signals. Math Biosci Eng 2009;6(1):1.
- [19] Zhang Y, Wang S, Sui Y, Yang M, Liu B, Cheng H, et al. Multivariate approach for Alzheimer’s disease detection using stationary wavelet entropy and predator-prey particle swarm optimization. J Alzheimers Dis 2018;65(3):855–69.
- [20] Li T, Zhou M. ECG classification using wavelet packet entropy and random forests. Entropy 2016;18(8):285.
- [21] Yan J, Shen X, Wang Y, Li F, Xia C, Guo R, et al. Objective research of auscultation signals in Traditional Chinese Medicine based on wavelet packet energy and Support Vector Machine. Int J Bioinf Res Appl 2010;6(5):435. https://doi.org/ 10.1504/IJBRA.2010.03798.
- [22] Nasrolahzadeh M, Haddadnia J, Rahnamayan S. Multiobjective optimization of wavelet-packet-based features in pathological diagnosis of Alzheimer using spontaneous speech signals. IEEE Access 2020;8:112393–406.
- [23] Reichert S, Gass R, Brandt C, Andrès E. Analysis of respiratory sounds: state of the art. Clin Med 2008;2:CCRPM.S530. https://doi.org/10.4137/CCRPM.S530.
- [24] Sgalla G, Larici AR, Sverzellati N, Bartholmai B, Walsh SL, Nikolic D, et al. Quantitative analysis of lung sounds for monitoring idiopathic pulmonary fibrosis: a prospective pilot study. Eur Respir J 2019;53(3).
- [25] Haider NS, Joseph J, Periyasamy R. An investigation on the statistical significance of spectral signatures of lung sounds. Biomed Res 2017;28(6).
- [26] Palaniappan R, Sundaraj K, Ahamed NU. Machine learning in lung sound analysis: a systematic review. Biocybernet Biomed Eng 2013;33(3):129–35.
- [27] Bohadana A, Izbicki G, Kraman SS. Fundamentals of lung auscultation. N Engl J Med 2014;370(8):744–51.
- [28] Lin EC. Radiation risk from medical imaging. Mayo Clin Proc 2010;85(12):1142–6.
- [29] Rubin GD. Costing in radiology and health care: rationale, relativity, rudiments, and realities. Radiology 2017;282 (2):333–47.
- [30] Malmberg LP, Pesu L, Sovijarvi AR. Significant differences in flow standardised breath sound spectra in patients with chronic obstructive pulmonary disease, stable asthma, and healthy lungs. Thorax 1995;50(12):1285–91.
- [31] Lin B-S, Wu H-D, Chen S-J. Automatic wheezing detection based on signal processing of spectrogram and back-propagation neural network. J Healthcare Eng 2015;6 (4):649–72.
- [32] Wang Z, Xiong YX. Lung sound patterns help to distinguish congestive heart failure, chronic obstructive pulmonary disease, and asthma exacerbations. Acad Emerg Med 2012;19 (1):79–84.
- [33] Chamberlain DB, Kodgule R, Fletcher RR. A mobile platform for automated screening of asthma and chronic obstructive pulmonary disease. In: Proc. 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC);2016.
- [34] Sengupta N, Sahidullah M, Saha G. Lung sound classification using cepstral-based statistical features. Comput Biol Med 2016;75:118–29.
- [35] Gogus FZ, Karlık B, Harman G. Identification of pulmonary disorders by using different spectral analysis methods. Int J Comput Intell Syst 2016;9(4):595–611.
- [36] Li SH, Lin BS, Tsai CH, Yang CT, Lin BS. Design of wearable breathing sound monitoring system for real-time wheeze detection. Sensors 2017;17(1):171.
- [37] Jácome C, Marques A. Computerized respiratory sounds: novel outcomes for pulmonary rehabilitation in COPD. Respir Care 2017;62(2):199–208.
- [38] Aykanat M, Kılıc¸ O, Kurt B, Saryal S. Classification of lung sounds using convolutional neural networks. EURASIP J Image Video Process 2017;2017(1):1–9.
- [39] Das N, Topalovic M, Janssens W. Artificial intelligence in diagnosis of obstructive lung disease: current status and future potential. Curr Opin Pulmonary Med 2018;24(2):117–23.
- [40] Islam MA, Bandyopadhyaya I, Bhattacharyya P, Saha G. Classification of normal, asthma and COPD subjects using multichannel lung sound signals. Proc. 2018 International Conference on Communication and Signal Processing (ICCSP), 2018.
- [41] Spathis D, Vlamos P. Diagnosing asthma and chronic obstructive pulmonary disease with machine learning. Health Inf J 2019;25(3):811–27.
- [42] Acharya J, Basu A. Deep neural network for respiratory sound classification in wearable devices enabled by patient specific model tuning. IEEE Trans Biomed Circuits Syst 2020;14 (3):535–44.
- [43] Kaplan A, Cao H, FitzGerald JM, Iannotti N, Kocks JW, Kostikas K, et al. Potential role for artificial intelligence/machine learning in the diagnosis of asthma and COPD. J Allergy Clin Immunol Pract 2021. Feb 15.
- [44] Fraiwan L, Hassanin O, Fraiwan M, Khassawneh B, Ibnian AM, Alkhodari M. Automatic identification of respiratory diseases from stethoscopic lung sound signals using ensemble classifiers. Biocybernet Biomed Eng 2021;41(1):1–14.
- [45] Stasiakiewicz P, Dobrowolski AP, Targowski T, Gałązka-Świderek N, Sadura-Sieklucka T, Majka K, et al. Automatic classification of normal and sick patients with crackles using wavelet packet decomposition and support vector machine. Biomed Signal Process Control 2021;67:102521.
- [46] Sen I, Saraclar M, Kahya YP. Differential diagnosis of asthma and COPD based on multivariate pulmonary sounds analysis. ieEE Trans Biomed Eng 2021;68(5):1601–10.
- [47] Srivastava A, Jain S, Miranda R, Patil S, Pandya S, Kotecha K. Deep learning based respiratory sound analysis for detection of chronic obstructive pulmonary disease. PeerJ Computer. Science 2021;7:e369.
- [48] Mukherjee H, Sreerama P, Dhar A, Obaidullah SM, Roy K, Mahmud M, et al. Automatic lung health screening using respiratory sounds. J Med Syst 2021;45(2):1–9.
- [49] Haider NS. Respiratory sound denoising using Empirical Mode Decomposition, Hurst analysis and Spectral Subtraction. Biomed Signal Process Control 2021;64:102313. https://doi.org/10.1016/j.bspc.2020.102313.
- [50] Mondal A, Bhattacharya PS, Saha G. Reduction of heart sound interference from lung sound signals using empirical mode decomposition technique. J Med Eng Technol 2011;35(6-7):344–53.
- [51] Varanis M, Pederiva R. Wavelet packet energy-entropy feature extraction and principal component analysis for signal classification. Proc. 2015 Proceeding Series of the Brazilian Society of Computational and Applied Mathematics, 2015.
- [52] Besbes S, Lachiri Z. Wavelet packet energy and entropy features for classification of stressed speech. In2016 17th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA) 2016 Dec 19 (pp. 98-103). IEEE.
- [53] He Q. Vibration signal classification by wavelet packet energy flow manifold learning. J Sound Vib 2013;332(7):1881–94.
- [54] Evgeniou T, Pontil M. Support vector machines: Theory and applications. Advanced Course on Artificial Intelligence. Berlin: Springer; 1999.
- [55] Subashini TS, Ramalingam V, Palanivel S. Breast mass classification based on cytological patterns using RBFNN and SVM. Expert Syst Appl 2009;36(3):5284–90.
- [56] Lorena AC, de Carvalho AC. Comparing techniques for multiclass classification using binary SVM predictors. InMexican International Conference on Artificial Intelligence 2004 (pp. 272-281). Springer, Berlin, Heidelberg.
- [57] Zhang Z. Introduction to machine learning: k-nearest neighbors. Ann Transl Med 2016;4(11).
- [58] Li T, Zhu S, Ogihara M. Using discriminant analysis for multiclass classification: an experimental investigation. Knowl Inf Syst 2006;10(4):453–72.
- [59] Bose S, Pal A, SahaRay R, Nayak J. Generalized quadratic discriminant analysis. Pattern Recogn 2015;48(8):2676–84.
- [60] Song YY, Ying LU. Decision tree methods: applications for classification and prediction. Shanghai Arch Psychiatry 2015;27(2):130.
- [61] Lorena AC, Jacintho LFO, Siqueira MF, Giovanni RD, Lohmann LG, de Carvalho ACPLF, et al. Comparing machine learning classifiers in potential distribution modelling. Expert Syst Appl 2011;38(5):5268–75.
- [62] Fawcett T. An introduction to ROC analysis. Pattern Recogn Lett 2006;27(8):861–74.
- [63] Azar AT, Elshazly HI, Hassanien AE, Elkorany AM. A random forest classifier for lymph diseases. Comput Methods Programs Biomed 2014;113(2):465–73.
- [64] Qureshi MNI, Min B, Jo HJ, Lee B, Zou Q. Multiclass classification for the differential diagnosis on the ADHD subtypes using recursive feature elimination and hierarchical extreme learning machine: structural MRI study. PLoS ONE 2016;11(8):e0160697.
- [65] Ali M, Son DH, Kang SH, Nam SR. An accurate CT saturation classification using a deep learning approach based on unsupervised feature extraction and supervised fine-tuning strategy. Energies 2017;10(11):1830.
- [66] Nowak LJ, Nowak KM. Sound differences between electronic and acoustic stethoscopes. Biomed Eng Online 2018;17(1):1-1.
- [67] Pasterkamp H, Kraman SS, Wodicka GR. Respiratory sounds: advances beyond the stethoscope. Am J Respir Crit Care Med 1997;156(3):974–87.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b47ea1ba-7398-4835-90e5-e3828715e820