PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Structural and magnetic studies on Co-Zn nanoferrite synthesized via sol-gel and combustion methods

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Co–Zn nanocrystalline ferrites with chemical composition Co0.5Zn0.5 Fe2O4 were synthesized by sol-gel and combustion methods. The sol-gel method was carried out in two ways, i.e. based on chelating agents PVA and PEG of high and low molecular weights. In auto-combustion method, the ratio of citric acid to metal nitrate was taken as 1:1, while in sol-gel method the chelating agents were taken based on oxygen balance. All the three samples were studied by thermogravimetric and differential thermal analysis for the identification of phase formation and ferritization temperature. The synthesized samples were characterized by powder X-ray diffraction and FT-IR spectroscopy without any thermal treatment. The measured lattice constants and observed characteristic IR absorption bands of the three samples are in good agreement with the reported values showing the formation of a cubic spinel structure. The crystallite sizes of all samples were determined using high intensity peaks and W-H plot. Size-Strain Plot method was also implemented since two of the samples showed low crystallite sizes. The least crystallite size (5.5 nm) was observed for the sample CZVP while the highest (23.8 nm) was observed for the sample CZCA. Cation distribution was proposed based on calculated and observed intensity ratios of selected planes from X ray diffraction data. All structural parameters were presented using experimental lattice constant and oxygen positional parameter, and they correlated with FT-IR results. Magnetic measurements were carried out using vibrating sample magnetometer at room temperature to obtain the characteristic parameters such as saturation magnetization, coercivity, remanence, squareness ratio and Bohr magnetons. Among all, the sample synthesized via citric acid autocombustion method displayed a remarkably higher magnetization of 53 emu/g and the remaining two samples displayed low magnetization values owing to their smaller crystallite sizes.
Wydawca
Rocznik
Strony
39--54
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Department of Physics, MVGR College of Engineering, Chintalavalasa, Vizianagaram-535005, Andhra Pradesh, India
  • Department of Physics, JNTU Kakinada, Kakinada - 533003, Andhra Pradesh, India
autor
  • Department of Electronics & Physics, GITAM Institute of Science, GITAM Deemed to be University, Visakhapatnam-530045, Andhra Pradesh, India
autor
  • Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad – 500058, Telangana, India
Bibliografia
  • [1] RAGHVENDRA SINGH Y., JAROMIR H., MIROSLAV H., PAVOL S., CIGAN A., MARTIN P., EVA B., MARTIN B., FRANTIŠKA F., JIRI M., MARTIN Z., LUKAS K., MIROSLAVA H., VOJTECH ˇ E., J. Magn. Magn. Mater., 378 (2015), 190.
  • [2] DZMITRY K., MARIA I., VLADIMIR P., YULIA F., Solid State Sci., 39 (2015), 69.
  • [3] MAJID NIAZ A., RAHMAN A., SULONG A.B., MUHAMMAD A.K., J. Magn. Magn. Mater., 421 (2017), 260.
  • [4] MANIKANDAN V., VANITHA A., RANJITH KUMAR E., KAVITA S., J. Magn. Magn. Mater., 426 (2017), 11.
  • [5] TASAWAR J., ASGHARI M., AKHLAQ A.M., J. Supercond. Nov. Magn., 24 (2011), 2137.
  • [6] ANDRIS S., GUNDARS M., Front. Mater. Sci., 6 (2012), 128.
  • [7] KASHINATH C.P., ARUNA S.T., TANU M., Curr. Opin. Solid St. M., 6 (2002), 507.
  • [8] RAUT A.V. , BARKULE R.S., SHENGULE D.R., JADHAV K.M., J. Magn. Magn. Mater., 358 – 359 (2014), 87.
  • [9] DERAZ N.M., ALARIFI A., J. Anal. Appl. Pyrol., 94 (2012), 41.
  • [10] GOZUAK F., KOSEOGLU Y., BAYKAL A., KAVAS H., J. Magn. Magn. Mater., 321 (2009), 2170.
  • [11] SHIVAJI R.K., SANJAY S.K., PRAMOD N.J., VASHISHTHA M.G., DURYODHAN P.W., GOVIND B.K., SANDIP R.S., SAMBHAJI R.B., Mater. Lett., 84 (2012), 169.
  • [12] SONAL S., SHARMA R., NAMGYAL T., JAUHAR S., BHUKAL S., KAUR J., Ceram. Int., 38 (2012), 2773.
  • [13] BHUKAL S., MOR S., BANSAL S., SINGH J., SINGHAL S., J. Mol. Struct., 1071 (2014), 95.
  • [14] DANKS A.E., HALL S.R., Mater. Horiz., 3 (2016), 91.
  • [15] SEONGOK HAN, KIM C., KWON D., Polymer, 38 (1997), 317.
  • [16] VARA PRASAD B.B.V.S., Mod. Phys. Lett. B, 28 (2014), 1450155.
  • [17] LAKHANI V.K, PATHAK T.K., VASOYA N.H., MODI K.B., Solid State Sci., 13 (2011), 539.
  • [18] MANIAMMAL K., MADHU G., BIJUA V., Physica E, 85 (2017), 214.
  • [19] BUERGER M.J., Crystal Structure Analysis, Wiley, New York, 1960.
  • [20] SHANNON R.D., Acta Crystallogr. A, 32 (1976), 751.
  • [21] VARA PRASAD B.B.V.S., RAJESH BABU B., SIVARAM PRASAD M., Mater. Sci.-Poland, 33 (2015), 806.
  • [22] MOHAMMED K.A., AL-RAWAS A.D., GISMELSEED A.M., SELLAI A., Physica B, 407 (2012), 795.
  • [23] JOSYULU O.S., SOBHANADRI J, Phys. Status Solidi A, 65 (1981), 479.
  • [24] REDDY P. V., SALAGRAM M., Phys. Status Solidi A, 100 (1987), 639.
  • [25] PRASAD M. S. R., PRASAD B. B.V.S.V., RAJESH B., RAO K. H., RAMESH K.V., J. Magn. Magn. Mater., 323 (2011), 2115.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b47c63d5-df04-49c1-bd63-e120fc97c7dd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.