Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: The aim of this article is to determine the effect of basic cell fill factor change on the eigenfrequencies observed in two-dimensional phononic crystal. Design/methodology/approach: To perform simulation, the FDFD (finite difference frequency domain) algorithm was used. On this basis, the search for eigenfrequencies was carried out starting from lowest possible acoustic frequency range (~20 Hz) and limited to first nine search results found (up to nearly 2.2 kHz) for increasing fill factor while maintaining the shape of a rod inside cell. Findings: The fill factor has a significant influence on the eigenfrequencies of the studied system when the frequency is above 1 kHz. With the increase of this factor at relatively low frequencies (less than 1 kHz in this case) there were no major changes observed. Research limitations/implications: The results were found only for specific system consisting of materials with similar sound velocity. Therefore, more research should be carried out for other cases i.e. taking into account the different topology of primary cells and various materials with other propagation velocity of acoustic waves in these mediums. Practical implications: Simulation of two-dimensional phononic crystal systems allows for designing new specialized multi-component materials with various acoustic properties. These systems can be adapted in a variety of applications, including acoustic filters, slow-wave devices, acoustic autocollimators and many other. Originality/value: Basic research allow to improve the quality of knowledge on more advanced problems. For this reason, it is important to know in detail how simple systems work and to determine the basic properties of these systems.
Wydawca
Rocznik
Tom
Strony
74--80
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
- Institute of Physics, Technical University of Czestochowa, ul. Armii Krajowej 19, 42-200 Częstochowa, Poland
autor
- Institute of Physics, Technical University of Czestochowa, ul. Armii Krajowej 19, 42-200 Częstochowa, Poland
autor
- Institute of Materials Engineering, Technical University of Czestochowa, ul. Armii Krajowej 19, 42-200 Częstochowa, Poland
Bibliografia
- [1] Ch. Li, D. Huang, J. Guo, J. Nie, Engineering of band gap and cavity mode in phononic crystal strip waveguides, Physics Letters A 377/038 (2013) 2633-2637.
- [2] B. Djafari-Rouhani, J.O. Vasseur, A.C. Hladky- Hennion, P. Deymier, F. Duval, B. Dubus, Y. Pennec, Absolute band gaps and waveguiding in free standing and supported phononic crystal slabs, Photonics and Nanostructures - Fundamentals and Applications 6/1 (2008) 32-37.
- [3] Y. Yao, F. Wu, X. Zhang, Z. Hou, Lamb wave band gaps in locally resonant phononic crystal strip waveguides, Physics Letters A 376/4 (2012) 579-583.
- [4] A. Salman, O.A. Kaya, A. Cicek, Determination of concentration of ethanol in water by a linear waveguide in a 2-dimensional phononic crystal slab, Sensors and Actuators A: Physical (in print).
- [5] M. Zubtsov, R. Lucklum, M. Ke, A. Oseev, R. Grundmann, B. Henning, U. Hempel, 2D phononic crystal sensor with normal incidence of sound, Sensors and Actuators A: Physical 186 (2012) 118-124.
- [6] R. Lucklum, J. Li, M. Zubtsov, 1D and 2D phononic crystal sensors, Procedia Engineering 5 (2010) 436-439.
- [7] M. Zubtsov, R. Lucklum, Tailoring 2D phononic crystal sensor properties by lattice symmetry reduction, Procedia Engineering 5 (2010) 1284-1287.
- [8] A. Oseev, M. Zubtsov, R. Lucklum, Gasoline properties determination with phononic crystal cavity sensor, Sensors and Actuators B: Chemical 189 (2013) 208-212.
- [9] R. Lucklum, M. Ke, M. Zubtsov, Two-dimensional phononic crystal sensor based on a cavity mode, Sensors and Actuators B: Chemical 171/172 (2012) 271-277.
- [10] R. Lucklum, M. Zubtsov, M. Ke, B. Henning, U. Hempel, 2D Phononic Crystal Sensor with Normal Incidence of Sound, Procedia Engineering 25 (2011) 787-790.
- [11] B. Bonello, C. Charles, F. Ganot, Velocity of a SAW propagating in a 2D phononic crystal, Ultrasonics 44 (2006) e1259-e1263.
- [12] Y. Tanaka, S.-I. Tamura, Two-dimensional phononic crystals: surface acoustic waves, Physica B: Condensed Matter 263/264 (1999) 77-80.
- [13] Y. Li, Z. Hou, Surface acoustic waves in a twodimensional phononic crystal slab with locally resonant units, Solid State Communications 173 (2013) 19-23.
- [14] W. Liu, X. Su, Collimation and enhancement of elastic transverse waves in two-dimensional solid phononic crystals, Physics Letters A 374/29 (2010) 2968-2971.
- [15] L. Wang, K. Bertoldi, Mechanically tunable phononic band gaps in three-dimensional periodic elastomeric structures, International Journal of Solids and Structures 49/19-20 (2012) 2881-2885.
- [16] Y. Liu, J.-Y. Su, L. Gao, The influence of the microtopology on the phononic band gaps in 2D porous phononic crystals, Physics Letters A 372/45 (2008) 6784-6789.
- [17] A.-L. Chen, Y.-S. Wang, Study on band gaps of elastic waves propagating in one-dimensional disordered phononic crystals, Physica B: Condensed Matter 392/1-2 (2007) 369-378.
- [18] Y.L. Xu, X.G. Tian, C.Q. Chen, Band structures of two dimensional solid/air hierarchical phononic crystals, Physica B: Condensed Matter 407/12 (2012) 1995-2001.
- [19] S.A. El-Naggar, S.I. Mostafa, N.H. Rafat, Complete band gaps of phononic crystal plates with square rods, Ultrasonics 52/4 (2012) 536-542.
- [20] K. Gruszka, S. Garus, M. Nabiałek, K Błoch, J. Gondro, M. Szota, B. Pająk, The transmission of the acoustic wave in the quasi one-dimensional multi-layer systems, Journal of Achievements in Materials and Manufacturing Engineering 61/2 (2013) 244-256.
- [21] K. Gruszka, S. Garus, J. Garus, K. Błoch, M. Nabiałek, Effect of Point Defects in a Twodimensional Phononic Crystal on the Reemission of Acoustic Wave, Materials Engineering 2/198 (2013) 132-135.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b4776225-22bc-483e-a3be-e9258fd25a16