PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of urbanization impact on urban heat island effect and rainfall for the Surat city

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Population growth and urbanization lead to urban heat island (UHI) phenomenon. Urbanization is occurring at a very high rate in the Surat city. Thus, the study of the urbanization impact on the UHI effect for the Surat city is performed in the present study through studying the impact of land use land cover on the land surface temperature of urban and sub-urban areas of the Surat city over the period May 1998 to May 2018. Also, these effects are compared with that of a nearby sub urban taluka Kamrej, which showed that temperature in urban areas is more than that of the sub-urban areas. Aforesaid facts clearly showing the existence of the UHI effect in the Surat city. As urbanization contributes to climate change, its effects on rainfall are studied by comparing rainfall trends of urban and sub-urban areas of the Surat city and nearby sub-urban area Kamrej. Trend analysis showed that trend magnitude values are higher for the urban areas than sub-urban areas, indicating that UHI effect increases rainfall in urban areas. Hotspot analysis is also performed for the Surat city corresponding to May 2018 to recognize hot spots and cold spots. As the Surat city is highly urbanized, thus, hotspots are more than cold spots.
Czasopismo
Rocznik
Strony
243--264
Opis fizyczny
Bibliogr. 51 poz.
Twórcy
autor
  • Department of Civil Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat 395007, India
  • Department of Civil Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat 395007, India
Bibliografia
  • 1. Bornstein R, Lin Q (2000) Urban heat islands and summertime convective thunderstorms in Atlanta: three case studies. Atmos Environ 34:507–516
  • 2. Census India: Villages & Towns in Kamrej Taluka Surat, Gujarat—Census 2011. www.censusindia.co.in/villagestowns/kamrej-taluka-surat-gujarat-3936. Accessed 27 Dec 2019
  • 3. Census India: Kamrej Taluka Population—Surat, Gujarat. www.censusindia2011.com/gujarat/surat/kamrej-population.html. Accessed 29 Dec 2019
  • 4. Connors JP, Galletti CS, Chow WTL (2013) Landscape configuration and urban heat island effects: assessing the relationship between landscape characteristics and land surface temperature in Phoenix, Arizona. Landsc Ecol 28:271–283. https://doi.org/10.1007/s10980-012-9833-1
  • 5. Cosgrove A, Berkelhammer M (2018) Downwind footprint of an urban heat island on air and lake temperatures. NPJ Clim Atmos Sci 1:1–10. https://doi.org/10.1038/s41612-018-0055-3
  • 6. Dipeshkumar PH, Bhagat SS (2019) Analysis of the relationship between land surface temperature and land Cover in Surat through Landsat 8 OLI. Int J Eng Res Manag Technol 9:3050–3059
  • 7. Dixon PG, Mote TL (2003) Patterns and causes of Atlanta’s urban heat island–initiated precipitation. J Appl Meteorol 42:1273–1284
  • 8. Fuladlu K, Riza M, Ilkan M (2018) The effect of rapid urbanization on the physical modification of urban area. In: Proceeding [at] of the 5th international conference on architectural and built environment with awards, Italy, vol 183. pp 1–183.9.
  • 9. Gallo KP, Owen TW (1999) Satellite-based adjustments for the urban heat island temperature bias. J Appl Meteorol 38:806–813
  • 10. Golroudbary VR, Zeng Y, Mannaerts CM, Su ZB (2018) Urban impacts on air temperature and precipitation over the Netherlands. Clim Res 75:95–109. https://doi.org/10.3354/cr01512
  • 11. Grigoraș G, Urițescu B (2018) Spatial hotspot analysis of Bucharest’s urban heat island (UHI) using modis data. Ann Valahia Univ Targoviste Geogr Ser 18:14–22
  • 12. He JF, Liu JY, Zhuang DF, Zhang W, Liu ML (2007) Assessing the effect of land use/land cover change on the change of urban heat island intensity. Theor Appl Climatol 90:217–226. https://doi.org/10.1007/s00704-006-0273-1
  • 13. Hu Y, Jia G (2010) Influence of land use change on urban heat island derived from multi-sensor data. Int J Climatol 30:1382–1395. https://doi.org/10.1002/joc.1984
  • 14. Ifatimehin OO (2007) An assessment of urban heat island of Lokoja town and surroundings using LandSat ETM data. FUTY J Environ 2(1):100–108
  • 15. Jin MS (2012) Developing an index to measure urban heat island effect using satellite land skin temperature and land cover observations. J Clim 25:6193–6201. https://doi.org/10.1175/JCLI-D-11-00509.1
  • 16. Kale GD, Kumar DN (2018) Trend detection analysis of seasonal rainfall of homogeneous regions and all India, prepared by using individual month rainfall values. Water Conserv Sci Eng 3:129–138. https://doi.org/10.1007/s41101-018-0047-5
  • 17. Kaplan G, Avdan U, Avdan ZY (2018) Urban heat island analysis using the landsat 8 satellite data: a case study in Skopje, Macedonia. In: Proceeding [at] of the 2nd international electronic conference on remote sensing, vol 2 (358). pp 1–5. https://doi.org/10.3390/ecrs-2-05171
  • 18. Kaufmann RK, Seto KC, Schneider A, Liu Z, Zhou L, Wang W (2007) Climate response to rapid urban growth: evidence of a human-induced precipitation deficit. J Clim 20:2299–2306. https://doi.org/10.1175/JCLI4109.1
  • 19. Kim YH, Baik JJ (2002) Maximum urban heat island intensity in Seoul. J Appl Meteorol 41:651–659
  • 20. Kumar A (2013) District ground water brochure Surat district, Gujarat state. Government of India Ministry of Water Resources Central Ground Water Board, pp 1–20
  • 21. Kumari M, Joshi N (2015) Spatiotemporal analysis of urban growth, sprawl and structure of Rajkot, Vadodara and Surat (Gujarat-India) based on geographic information systems, in relation to the sustainability pentagon analysis. Indian J Sci Technol 8(28):1–6. https://doi.org/10.17485/ijst/2015/v8i28/83639
  • 22. Kundzewicz ZW, Robson AJ (2000) Detecting trend and other changes in hydrological data, WCDMP-45, WMO/TD–No. 1013, Geneva. World Meteorological Organization, Geneva, Switzerland
  • 23. Latlong.net: Kamrej, Gujarat, India. https://www.latlong.net/place/kamrej-gujarat-india-14582.html. Accessed 6 May 2020
  • 24. Lin CY, Chen WC, Chang PL, Sheng YF (2011) Impact of the urban heat island effect on precipitation over a complex geographic environment in northern Taiwan. J Appl Meteorol Climatol 50:339–353. https://doi.org/10.1175/2010JAMC2504.1
  • 25. Longxun C, Wenqin Z, Xiuji Z, Zijiang Z (2003) Characteristics of the heat island effect in Shanghai and its possible mechanism. Adv Atmos Sci 20(6):991–1001
  • 26. Magee N, Curtis J, Wendler G (1999) The urban heat island effect at Fairbanks, Alaska. Theor Appl Climatol 64:39–47
  • 27. Manik TK, Syaukat S (2015) The impact of urban heat islands: assessing vulnerability in Indonesia. International Institute for Environmental and Development, Asian Cities Climate Resilience Working Paper Series, vol 13. pp 1–83
  • 28. Miao S, Chen F, Li Q, Fan S (2011) Impacts of urban processes and urbanization on summer precipitation: a case study of heavy rainfall in Beijing on 1 August 2006. J Appl Meteorol Climatol 50:806–825
  • 29. Mishra V, Ganguly AR, Nijssen B, Lettenmaier DP (2015) Changes in observed climate extremes in global urban areas. Environ Res Lett 10:1–10
  • 30. Mote TL, Lacke MC, Shepherd JM (2007) Radar signatures of the urban effect on precipitation distribution: a case study for Atlanta, Georgia. Geophys Res Lett 34:1–4
  • 31. Pal S, Ziaul SK (2017) Detection of land use and land cover change and land surface temperature in English Bazar urban centre. Egypt J Remote Sens Space Sci 20:125–145. https://doi.org/10.1016/j.ejrs.2016.11.003
  • 32. Parikh K, Parikh J, Kumar M (2017) Vulnerability of Surat, Gujarat to flooding from Tapi River: a climate change impact assessment. Vayu Mandal 43(2):120–129
  • 33. Peng S, Piao S, Ciais P et al (2012) Surface urban heat island across 419 global big cities. Environ Sci Technol 46:696–703. https://doi.org/10.1021/es2030438
  • 34. Ren GY, Chu ZY, Chen ZH, Ren YY (2007) Implications of temporal change in urban heat island intensity observed at Beijing and Wuhan stations. Geophys Res Lett 34:1–5. https://doi.org/10.1029/2006GL027927
  • 35. Scheuer S, Haase D, Volk M (2017) Integrative assessment of climate change for fast-growing urban areas: measurement and recommendations for future research. PLoS ONE 12(12):1–27. https://doi.org/10.1371/journal.pone.0189451
  • 36. Schlunzen KH, Hoffmann P, Rosenhagen G, Riecke W (2010) Long-term changes and regional differences in temperature and precipitation in the metropolitan area of Hamburg. Int J Climatol 30:1121–1136. https://doi.org/10.1002/joc.1968
  • 37. Sharma R, Ghosh A, Joshi PK (2013) Analysing spatio-temporal footprints of urbanization on environment of Surat city using satellite-derived bio-physical parameters. Geocarto Int 28(5):420–438. https://doi.org/10.1080/10106049.2012.715208
  • 38. Sheng C, Wei-Biao L, Yao-Dong D, Cheng-Yan M, Lan Z (2015) Urbanization effect on precipitation over the Pearl River Delta based on CMORPH data. Adv Clim Change Res Natl Clim Center 6:16–22. https://doi.org/10.1016/j.accre.2015.08.002
  • 39. Singh BR, Singh O (2012) Study of impacts of global warming on climate change: rise in sea level and disaster frequency. In: Singh BR (ed) Global warming—impacts and future perspectives. InTech, London. https://doi.org/10.5772/50464
  • 40. Stathopoulou M, Cartalis C, Keramitsoglou I (2004) Mapping micro-urban heat islands using NOAA/AVHRR images and CORINE land cover: an application to coastal cities of Greece. Int J Remote Sens 25(12):2301–2316. https://doi.org/10.1080/01431160310001618725
  • 41. Surat Municipal Corporation: Surat smart city, About Surat. https://www.suratsmartcity.com/Surat/AboutSurat. Accessed 22 June 2019
  • 42. Surat Municipal Corporation: Population of all India, Gujarat state, Surat dist. & S.M.C from 1901 to 2011. https://www.suratmunicipal.gov.in/TheCity/City/Stml9. Accessed 27 Feb 2020
  • 43. Surat Municipal Corporation: weather. https://www.suratmunicipal.gov.in/TheCity/Weather. Accessed 6 May 2020
  • 44. Thakkar Y, Chauhan KA (2014) Overview of area planning proposal for medium town: a case study of Kamrej Town, Surat District. Int J Sci Res 3(3):69–72
  • 45. Thunen D (2013) The urban heat island and its influence on precipitation in Denver, Colorado (Master’s dissertation). University of Denver Digital Commons @ DU, pp 1–123
  • 46. Tiangco M, Lagmay AMF, Argete J (2008) ASTER-based study of the night-time urban heat island effect in Metro Manila. Int J Remote Sens 29(10):2799–2818. https://doi.org/10.1080/01431160701408360
  • 47. Wang W, Zhou W, Ng EYY, Xu Y (2016) Urban heat islands in Hong Kong: statistical modeling and trend detection. Nat Hazards 83:885–907. https://doi.org/10.1007/s11069-016-2353-6
  • 48. Yang P, Ren G, Liu W (2013) Spatial and temporal characteristics of Beijing urban heat island intensity. J Appl Meteorol Climatol 52:1803–1816. https://doi.org/10.1175/JAMC-D-12-0125.1
  • 49. Yow DM, Carbone GJ (2019) The urban heat island and local temperature variations in Orlando, Florida. Southeast Geogr 46(2):297–322
  • 50. Zhou D, Zhao S, Zhang L, Sun G, Liu Y (2015) The footprint of urban heat island effect in China. Sci Rep 5(1):1–11
  • 51. Zhou W, Qian Y, Li X, Li W, Han L (2014) Relationships between land cover and the surface urban heat island: seasonal variability and effects of spatial and thematic resolution of land cover data on predicting land surface temperatures. Landsc Ecol 29:153–167
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b475250e-af30-4810-ad67-a5ee00343754
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.