PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A diode-pumped high-repetition-frequency passively Q-switched Nd:LaMgAl11O19 laser

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
High-repetition-frequency Q-switched laser is realized through adopting a Nd:LaMgAl11O19 (Nd:LMA) disordered crystal as the gain material, a laser diode lasing at 796 nm as the pumped source, and a semiconductor saturable absorber mirror (SESAM) as the Q-switched device. The out-put characteristics are analyzed under using different transmittance T plane mirrors as an output coupler. Without adopting SESAM, the laser is operating at a CW state, and a relatively high transmittance is helpful for achieving high output power, slope efficiency and light-to-light efficiency. ForT = 7.5% and an absorbed power of 6.17 W, the output power arrives at its maximum of 1160 mW,and the corresponding slope efficiency and light-to-light efficiency are 20.71% and 18.78%, respectively. After introducing SESAM into the cavity, the laser operates at a passively Q-switched state, and the largest slope efficiency is 13.14% under T = 5.0%. Adopting five different output couplers, with the increase of the absorbed power, the pulse repetition frequencies, the pulse energies and the peak powers will ascend while the pulse widths will decline. The observed narrowest pulse width, the maximum pulse repetition frequency, the highest pulse energy and peak power are 1.745 μs, 175.88 kHz, 3.21 μJ and 1.84 W, respectively.
Czasopismo
Rocznik
Strony
415--423
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
autor
  • School of Physical Science and Technology, Southwest University, Chongqing 400715, China
autor
  • School of Physical Science and Technology, Southwest University, Chongqing 400715, China
  • School of Physical Science and Technology, Southwest University, Chongqing 400715, China
autor
  • School of Physical Science and Technology, Southwest University, Chongqing 400715, China
Bibliografia
  • [1] YANG K.J., ZHAO S.Z., LI G.G., ZHAO H.M., A new model of laser-diode end-pumped actively Q-switched intracavity frequency doubling laser, IEEE Journal of Quantum Electronics 40(9), 2004, pp. 1252–1257, DOI:10.1109/JQE.2004.833227.
  • [2] GOEL A., Clinical applications of Q-switched NdYAG laser, Indian Journal of Dermatology, Venereology and Leprology 74(6), 2008, pp. 682–686, DOI:10.4103/0378-6323.45135.
  • [3] SHI W., KERR S., UTKIN I., RANASINGHESAGARA J., PAN L., GODWAL Y., ZEMP R., FEDOSEJEVS R., Optical resolution photoacoustic microscopy using novel high-repetition-rate passively Q-switched microchip and fiber lasers, Journal of Biomedical Optics 15(5), 2010, article 056017, DOI:10.1117/1.3502661.
  • [4] UDEM T., HOLZWARTH R., HÄNSCH T.W., Optical frequency metrology, Nature 416(6877), 2002, pp. 233–237, DOI:10.1038/416233a.
  • [5] MARCZAK J., KUSINSKI J., MAJOR R., RYCYK A., SARZYNSKI A., STRZELEC M., CZYZ K., Laser interference patterning of diamond-like carbon layers for directed migration and growth of smooth muscle cell depositions, Optica Applicata 44(4), 2014, pp. 575–586, DOI:10.5277/oa140408.
  • [6] TIAN K., YANG J.N., YI H.Y., DOU X.D., MA Y.J., LI Y.H., HAN W.J., LIU J.H., High-power Yb:YCa4O(BO3)3 laser passively Q-switched by a few-layer WS2 saturable absorber, Optics & Laser Technology 113, 2019, pp. 1–5, DOI:10.1016/j.optlastec.2018.12.001.
  • [7] WANG J.L., LI S., XING Y.P., CHEN L., WEI Z.Y., WANG Y.G., A high-energy passively Q-switched Yb-doped fiber laser based on WS2 and Bi2Te3 saturable absorbers, Journal of Optics 19(9), 2017, article 095506, DOI:10.1088/2040-8986/aa7f5f.
  • [8] KELLER U., WEINGARTEN K.J., KÄRTNER F.X., KOPF D., BRAUN B., JUNG I.D., FLUCK R., HONNINGER C., MATUSCHEK N., AUSDER AU J., Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers, IEEE Journal of Selected Topics in Quantum Electronics 2(3), 1996, pp. 435–453, DOI:10.1109/2944.571743.
  • [9] KELLER U., Ultrafast solid-state laser oscillators: a success story for the last 20 years with no endin sight, Applied Physics B 100(1), 2010, pp. 15–28, DOI:10.1007/s00340-010-4045-3.
  • [10] REN X.J., SHEN D.Y., ZHANG J., TANG D.Y., Passive Q-switching of ~2.7 μm Er:Lu2O3 ceramic laser with a semiconductor saturable absorber mirror, Japanese Journal of Applied Physics 57(2), 2018, article 022701, DOI:10.7567/JJAP.57.022701.
  • [11] HE Y., MA Y.F., LI J., LI X.D., YAN R.P., GAO J., YU X., SUN R., PAN Y.B., Continuous-wave and passively Q-switched 1.06 μm ceramic Nd:YAG laser, Optics & Laser Technology 81, 2016, pp. 46–49, DOI:10.1016/j.optlastec.2016.01.027.
  • [12] HAO Q.Q., PANG S.Y., LIU J., SU L.B., Tunable and passively Q-switched laser operation of Nd, Lu:CaF2 disordered crystal, Applied Optics 57(22), 2018, pp. 6491–6495, DOI:10.1364/AO.57.006491.
  • [13] GUAN X.F., ZHAN L.J., ZHU Z.W., XU B., XU H.Y., CAI Z.P., CAI W.W., XU X.D., ZHANG J., XU J., Continuous-wave and chemical vapor deposition graphene-based passively Q-switched Er:Y2O3 ceramic lasers at 2.7 μm, Applied Optics 57(3), 2018, pp. 371–376, DOI:10.1364/AO.57.000371.
  • [14] DOU X.D., MA Y.J., ZHU M., XU H.H., ZHONG D.G., TENG B., LIU J., Multi-watt sub-30ns passively Q-switched Yb:LuPO4/WS2 miniature laser operating under high output couplings, Optics Letters 43(15), 2018, pp. 3666–3669, DOI:10.1364/OL.43.003666.
  • [15] WANG Y.G., MA X.Y., WANG C.L., LIN T., ZHEN K., WANG J., ZHONG L., JIA Y.L., WEI Z.Y., GaAs absorber grown at low temperature used in passively Q-switched diode pumped solid state laser, Optica Applicata 36(1), 2006, pp. 23–28.
  • [16] KOROMYSLOV A.L., TUPITSYN I.M., CHESHEV E.A., Dual-wavelength Q-switched laser based on a lens-shaped Nd:YAG active element and a Cr4+:YAG passive Q-switch, Quantum Electronics 49(2), 2019, pp. 95–97, DOI:10.1070/QEL16816.
  • [17] ZHANG H.J., MENG X.L., LIU J.H., ZHU L., WANG C.Q., SHAO Z.S., WANG J.Y., LIU Y.G., Growth of lowly Nd doped GdVO4 single crystal and its laser properties, Journal of Crystal Growth 216(1–4), 2000, pp. 367–371, DOI:10.1016/S0022-0248(00)00438-3.
  • [18] TIAN Q.Y., XU B., ZHANG Y.S., XU H.Y., CAI Z.P., XU X.D., 1.83-μm high-power and high-energy light source based on 885-nm in-band diode-pumped Nd:YAG bulk laser operating on 4F3/2→4I15/2 transition, Optics Express 27(9), 2019, pp. 12565–12571, DOI:10.1364/OE.27.012565.
  • [19] DI J.Q., XU X.D., MENG J.Q., LI D.Z., ZHOU D.H., WU F., XU J., Diode-pumped continuous waveand Q-switched operation of Nd:LuAG crystal, Laser Physics 21(5), 2011, pp. 844–846, DOI:10.1134/S1054660X11090039.
  • [20] CHENG M.Y., WANG Z.H., CAO Y.F., MENG X.H., ZHU J.F., WANG J.L., WEI Z.Y., High power diode-pumped passively mode-locked Nd:YVO4 laser at repetition rate of 3.2 GHz, Chinese Physics B28(5), 2019, article 054205, DOI:10.1088/1674-1056/28/5/054205.
  • [21] SCHEARER L., LEDUC M., VIVIEN D., LEJUS A.-M., THERY J., LNA: a new CW Nd laser tunable around 1.05 and 1.08 μm, IEEE Journal of Quantum Electronics 22(5), 1986, pp. 713–717, DOI:10.1109/JQE.1986.1073024.
  • [22] PAN Y.X., ZHOU S.D., WANG J.W., XU B., LIU J., SONG Q.S., XU J., LI D.Z., LIU P., XU X.D., XU J., Growth, spectral properties, and diode-pumped laser operation of a Nd3+-doped LaMgAl11O19 crystal, Applied Optics 57(32), 2018, pp. 9657–9661, DOI:10.1364/AO.57.009657.
  • [23] ZHANG X.Z., HE J., TANG T.H., TENG B., ZHONG D.G., XU X.G., WANG Z.P., Efficient laser operations of unprocessed thin plate of Nd:YPO4 crystal, Optics Express 26(20), 2018, pp. 26179–26187, DOI:10.1364/OE.26.026179.
  • [24] CZERANOWSKY C., SCHMIDT M., HEUMANN E., HUBER G., KUTOVOI S., ZAVARTSEV Y., Continuous wavediode pumped intracavity doubled Nd:GdVO4 laser with 840 mW output power at 456 nm, Optics Communications 205(4–6), 2002, pp. 361–365, DOI:10.1016/S0030-4018(02)01298-1.
  • [25] LU J., HUANG Z.M., JIN Z.H., WANG Y.J., ZHOU F.Z., ZHANG X.R., WU G.Z., SHENG L., Diode-pumped monolithic Nd:LMA laser, Chinese Journal of Lasers B 3(1), 1994, pp. 5–9.
  • [26] WANG J.W., ZHANG Y.H., GUAN X.F., XU B., XU H.Y., CAI Z.P., PAN Y.X., LIU J., XU X.D., XU J., High-efficiency diode-pumped continuous-wave and passively Q-switched c-cut Nd:LaMgAl11O19 (Nd:LMA) lasers, Optical Materials 86, 2018, pp. 512–516, DOI:10.1016/j.optmat.2018.10.053.
  • [27] DEGNAN J.J., Theory of the optimally coupled Q-switched laser, IEEE Journal of Quantum Electronics 25(2), 1989, pp. 214–220, DOI:10.1109/3.16265.
  • [28] BRAUN B., KÄRTNER F.X., ZHANG G., MOSER M., KELLER U., 56-ps passively Q-switched diode-pumped microchip laser, Optics Letters 22(6), 1997, pp. 381–383, DOI:10.1364/OL.22.000381.
  • [29] MATEOS X., LOIKO P., LAMRINI S., SCHOLLE K., FUHRBERG P., SUOMALAINEN S., HÄRKÖNEN A., GUINA M.,VATNIK S., VEDIN I., AGUILÓ M., DÍAZ F., WANG Y.C., GRIEBNER U., PETROV V., Ho:KY(WO4)2 thin-disk laser passively Q-switched by a GaSb-based SESAM, Optics Express 26(7), 2018, pp. 9011–9016, DOI:10.1364/OE.26.009011.
  • [30] LI J.F., LUO H.Y., WANG L.L., ZHAO C.J., ZHANG H., LI H.P., LIU Y., 3-μm mid-infrared pulse generation using topological insulator as the saturable absorber, Optics Letters 40(15), 2015, pp. 3659–3662, DOI:10.1364/OL.40.003659.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b474055a-5bba-4c81-bcf5-a240d9cb4052
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.