PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A global model for the inductively coupled rf discharges in Ar/H2 mixture

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Model indukcyjnie sprzężonego wyładowania rf w mieszaninie ASr/H2
Języki publikacji
EN
Abstrakty
EN
This paper presents the simulation of the rf Inductively Coupled Plasma (ICP) characteristics in the Ar/H2 mixture at low pressure, within a cylindrical stainless steel chamber. The global model used in this study and implemented on the COMSOL Multiphysics software, is elaborated under four main components: The fluid model for plasma species is associated with the electromagnetic equations for the calculation of the electric field using the magnetic vector potential. Moreover, since the plasma is weakly ionized, the properties of the neutral gas species must be taken into account by using the Navier-Stokes equation to describe the gas flow and the heat transfer equation to calculate the gas heating due to elastic collisions between electrons and neutrals. In this work, the model is first applied in order to understand the physical and chemical processes in the Ar/H2 plasmas. The properties of plasma species in the mixture are second investigated as a function of hydrogen fraction assuming the Maxwellian electron energy distribution. The theoretical interpretations of the obtained results are also addressed in this paper.
PL
W artykule przedstawiono symulację właściwości rf plazmy sprzężonej indukcyjnie (ICP) w mieszaninie Ar / H2 pod niskim ciśnieniem, w cylindrycznej komorze ze stali nierdzewnej. Model globalny zastosowany w tym badaniu i wdrożony w oprogramowaniu COMSOL Multiphysics jest opracowany w ramach czterech głównych komponentów: Model płynu dla form plazmy jest powiązany z równaniami elektromagnetycznymi służącymi do obliczania pola elektrycznego z wykorzystaniem potencjału wektora magnetycznego. Ponadto, ponieważ plazma jest słabo zjonizowana, należy wziąć pod uwagę właściwości obojętnych form gazu, stosując równanie Naviera-Stokesa do opisu przepływu gazu oraz równanie przenoszenia ciepła, aby obliczyć nagrzewanie gazu w wyniku zderzeń sprężystych między elektronami. W tej pracy model został po raz pierwszy zastosowany w celu zrozumienia procesów fizycznych i chemicznych zachodzących w plazmie ArH2.
Rocznik
Strony
30--36
Opis fizyczny
Bibliogr., 41 poz., rys., tab.
Twórcy
  • Hassiba Benbouali University of Chlef, Algeria
  • Hassiba Benbouali University of Chlef, Algeria
Bibliografia
  • [1] A. Efremov, N. Min, J. Jeong, Y. Kim, and K. Kwon. “Etching characteristics of Pb (Zr,Ti)O3, Pt, SiO2, and Si3N4 in an inductively coupled HBr/Ar plasma”. Plasma Sources Sci. Technol. 19 (2010), 045020
  • [2] S. Yoon, K. Tan, Rusli, and J. Ahn. “Modeling and analysis of hydrogen methane plasma in electron cyclotron resonance chemical vapor deposition of diamond-like carbon”. J. Appl. Phys. 91 (2002). 40: 47
  • [3] I. B. Denysenko, S. Xu, J. D. Long, R. P. Rutkevych, N. A. Azarenkov, and K. Ostrikov. “Inductively coupled Ar/CH4/H2 plasmas for low temperature deposition of ordered carbon nanostructures”. J. Appl. Phys. 95 (2004), 2713.
  • [4] J. Zhou, I. T. Martin, R. Ayers, E. Adams, D. Liu, and E. R. Fisher. “Investigation of inductively coupled Ar and CH4/Ar plasmas and the effect of ion energy on DLC film properties”. Plasma Sources Sci. Technol. 15 (2006), 714: 726.
  • [5] J. D. Bernstein, S. Qing, C. Chan, and T.-J. King. “High doserate hydrogen passivation of polycrystalline silicon CMOS TFTs by plasma ion implantation”. IEEE Trans. Electron Devices 43 (1996), 1876: 1882
  • [6] M. Sode, T. Schwarz-Selinger, and W. Jacob, “Ion chemistry in H2-Ar low temperature plasmas”. Journal of Applied Physics 114 (2013), 063302
  • [7] B. P. Lavrov, A. V. Pipa, and J. Ropcke. Plasma Sources Sci. Technol. 15 (2006), 135
  • [8] M. Abdel-Rahman, V. Schulz-von der Gathen, T. Gans, K. Niemi, and H. F. Dobele.. Plasma Sources Sci. Technol. 15 (2006), 620
  • [9] Kimura, Takashi, and Hiroki Kasugai. "Properties of inductively coupled rf Ar/H 2 plasmas: Experiment and global model." Journal of Applied Physics 107.8 (2010): 083308.
  • [10] C.-F. Yeh, T.-J. Chen, C. Liu, J. Gudmundsson, and M. Lieberman, “Hydrogenation of polysilicon thin-film transistor in a planar inductive H2/Ar discharge”. IEEE Electron Device Lett. 20 (1999), 223:225
  • [11] N. Fox-Lyon, G. S. Oehrlein, N. Ning, and D. B. Graves, Hydrogenation and surface density changes in hydrocarbon films during erosion using Ar/ H2 plasmas”. J. Appl. Phys. 110 (2011), 104314
  • [12] V. S. Voitsenya, D. I. Naidenkova, Y. Kubota, S. Masuzaki, A. Sagara, and K. Yamazaki, “On the possibility to increase efficiency of conditioning of vacuum surfaces by using a discharge in a hydrogen-noble gas mixture,”. Natl. Inst. Fusion Sci. 799 (2004), 1
  • [13] M. Park, H.-Y. Chang, S.-J. You, J.-H. Kim, and Y.-H. Shin, Phys. Plasmas 18 (2011), 103510
  • [14] B. H. Seo, J. H. Kim, and S. J. You, “Effects of argon gas pressure on its metastable-state density in high-density plasmas”. Physics of Plasmas 22 (2015), 053514
  • [15] www.lxcat.net/Phelps visited 19 March 2020
  • [16] L.L. Alves, ''The IST-Lisbon database on LXCat'' J. Phys. Conf. Series (2014), 565, 1
  • [17] Yoon, Jung-Sik, et al. "Cross sections for electron collisions with hydrogen molecules." Journal of Physical and Chemical Reference Data 37.2 (2008): 913-931.
  • [18] https://www-amdis.iaea.org/ALADDIN/collision.html visited 19 March 2020
  • [19] www.lxcat.net/Hayashi visited 19 March 2020
  • [20] Ferreira, C. M., J. Loureiro, and A. Ricard. "Populations in the metastable and the resonance levels of argon and stepwise ionization effects in a low‐pressure argon positive column." Journal of applied physics 57.1 (1985): 82-90.
  • [21] Hyman, H. A. "Electron-impact ionization cross sections for excited states of the rare gases (Ne, Ar, Kr, Xe), cadmium, and mercury." Physical Review A 20.3 (1979): 855.
  • [22] Peart, B., D. S. Walton, and K. T. Dolder. "Electron detachment from H-ions by electron impact." Journal of Physics B: Atomic and Molecular Physics 3.10 (1970): 1346.
  • [23] McCall, B. J., et al. "Dissociative recombination of rotationally cold H 3+." Physical Review A 70.5 (2004): 052716.
  • [24] Hjartarson, A. T., E. G. Thorsteinsson, and J. T. Gudmundsson. "Low pressure hydrogen discharges diluted with argon explored using a global model." Plasma Sources Science and Technology 19.6 (2010): 065008.
  • [25] Bogaerts, A., and R. Gijbels. "Modeling of metastable argon atoms in a direct-current glow discharge." Physical Review A 52.5 (1995): 3743.
  • [26] Phelps, A. V. "Collisions of H+, H 2+, H 3+, ArH+, H−, H, and H 2 with Ar and of Ar+ and ArH+ with H2 for energies from 0.1 eV to 10 keV." Journal of physical and chemical reference data 21.4 (1992): 883-897.
  • [27] Hejduk, M. "Formation and Destruction of Para and Ortho H3+ in Discharge and Afterglow. Experiments with Para- Hydrogen." WDS 2010-Proceedings of Contributed Papers. Proceedings of the 19th Annual Conference of Doctoral Students, held 1-4 June 2010, in Prague. Edited by Jana Safránková and Jirí Pavlû. Part II-Physics of Plasmas and Ionized Media (ISBN 978-80-7378-140-8) MATFYZPRESS, Prague, 2010., p. 54-59. 2010.
  • [28] Karpasb, Z., V. Anicich, and W. T. Huntress Jr. "An ion cyclotron resonance study of reactions of ions with hydrogen atomsa." The Journal of Chemical Physics 70.6 (1979): 2877- 2881.
  • [29] Fehsenfeld, F. C., A. L. Schmeltekopf, and E. E. Ferguson. "Thermal‐energy ion—neutral reaction rates. VII. Some hydrogen‐atom abstraction reactions." The Journal of Chemical Physics 46.7 (1967): 2802-2808.
  • [30] Bruhns, H., et al. "Absolute energy-resolved measurements of the H−+ H→ H 2+ e− associative detachment reaction using a merged-beam apparatus." Physical Review A 82.4 (2010): 042708.
  • [31] Harada, Nanase, and Eric Herbst. "Modeling carbon chain anions in L1527." The Astrophysical Journal 685.1 (2008): 272.
  • [32] Rolin, M. N., et al. "Self-consistent modelling of a microwave discharge in neon and argon at atmospheric pressure." Plasma Sources Science and Technology 16.3 (2007): 480.
  • [33] Zhu, Xi-Ming, and Yi-Kang Pu. "A simple collisional– radiative model for low-temperature argon discharges with pressure ranging from 1 Pa to atmospheric pressure: kinetics of Paschen 1s and 2p levels." Journal of Physics D: Applied Physics 43.1 (2009): 015204.
  • [34] Bourene, M., and J. Le Calvé. "De‐excitation cross sections of metastable argon by various atoms and molecules." The Journal of Chemical Physics 58.4 (1973): 1452-1458.
  • [35] Sadeghi, N., and D. W. Setser. "Symmetry constraints in energy transfer between state-selected Ar*(3P2, 3P0) metastable atoms and ground state H atoms." Chemical physics 95.2 (1985): 305-311.
  • [36] Dickerson, George Fielden. "A direct lifetime measurement for a resonance transition in argon." (1965).
  • [37] Wiese, W. L., M. W. Smith, and B. M. Miles. Atomic transition probabilities. volume 2. sodium through calcium. National Standard Reference Data System, 1969.
  • [38] Dose, V., and A. Richard. "Collision induced Lyman-alpha emission from metastable hydrogen." Journal of Physics B: Atomic and Molecular Physics 14.1 (1981): 63.
  • [39] Glass-Maujean, M. "Collisional Quenching of H (2 S) Atoms by Molecular Hydrogen: Two Competitive Reactions." Physical review letters 62.2 (1989): 144.
  • [40] Wiese, Wolfgang L., Melvin William Smith, and B. M. Glennon. Atomic transition probabilities. Volume 1. Hydrogen through neon. National Bureau Of Standards Washington Dc Inst For Basic Standards, 1966.
  • [41] B. M. Smirnov, 2015. Cham: Springer, vol. 84
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b472b572-de94-43b2-805f-db81527e4ade
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.