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Abstract

In this paper, a new global optimization algorith imitating ancient Chinese human body system inode
named as lambda algorithm, is introduced. The lar@dorithm utilizes five-element multi-segmentrgirto
represent then-dimensional Euclidean point and hence the striaged operation rules for expansion,
comparison and sorting candidate strings. The #lgorenjoys the simplest mathematical operations bu
generates highest searching speed and accuraey/furtiermore explore to merge the lambda algorithith
maximum likelihood procedure for creating a nonigaive scheme - likelihood- lambda procedure. A
illustrative example is given.

1. Introduction
- Lo operation and sort procedure. In contrast to egsti
Safety and reliability optimization problems are @ global optimization algorithms, particularly GA eth

fundamental components intrinsically in the Sensej;nnqa algorithm engages the simplest mathematics
that the statistical theory underlying them is bup |t reaches the highest searching efficiency.

by a pile of relevant mathematical optimal theories,o remaining structure of the paper is stated as

and methodologies. Particularly, in safety andg)5ying: Section two serves the introduction f 5
reliability - modelling  practices  the maximum  gement string and the presentation of an Euclidean
likelihood ~ estimation plays an important role. yector: Section three will features of the lambda
Therefore, it is necessary to improve the efficleinc 5 05rithm: Section four will discuss the operators
searching the optimal solution of a likelihood gngaged in the lambda algorithm and identify the
fu'nctlon. : _ Markovian features of the searching scheme; Section
Different  searching ~schemes have differentg, o reserves for testing the new algorithm, Sectio
efficiency. The standard derlvatlv_e-orlent scheme, g, proposes the merging of lambda algorithm and
the Newton-Raphson procedure is the commonlyjiyejinood searching procedure and a reliability

engaged, see [1], [10], [11]. However, more and,,qjication and Section Seven conclude this paper.
more searching schemes are utilizing non derivative

orient schemes, for example, merging likelihood and
genetic algorithm to avoid derivative computations.
The lambda algorithm is created by imitating an
ancient human body system, see [4], [6], [7]. B it In this section we utilize the Rosenbrock’s funetio
searching scheme, except the necessary mathematica an example for introducing the lambda algorithm.
computations for evaluating the objective function Assume that the two-dimensional Rosenbrock’s

and the creation of the initial “searching popuati . _ 2V (1 )2 inh
randomly, the algorithm only involves if-else logiic function, f(x, x,) 100()(2 xi-) #(1- )" , which is

2. Five-element string and Euclidean vector
presentation

the objective function under investigation. There a
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many local optimal solutions, but we are interedited
obtain the global optimal solution bf

Similar to the genetic algorithm (GA) binary string
representation, whose element sedig0,1}, the A-

algorithm takes elements from a 5 element-set, lwhic

takes a membership s&={0, 1, 2, 3, 4}, to
construct a string candidate solution which

represents the candidate solution, Euclidean vector

X, in the 2-dimensional Euclidean spaké in term
of a linear transformation.

Definition 2.1 A string in an algorithm, denoted by
e=eeg-- gisS a sequence of elements from the

membership séd. The total number of the elements,

|, composed of the stringis called the length of the
string.

Definition 2.2 In a string algorithm, in order to
represent an n-dimensional Euclidean point
x'=(x,%,, %), a stringeis typically constituted
by n segmental strings, whose length are.e., the
string e=ee--- ¢ with length I =nu , where the
i" segment of the string, or tifesegmental string,
&= e,u(i—1)+1?u(—1)+2”' & is of Iength u .,
(i=1,2,--- ,n).

Definition 2.3. A triple (m,un) is called string
configuration, wheren =total number of elements in
the membership séd, u=the length of segmental
String§ = €116, (-1y2" § » andn=total number
of segmental
e=ge- p. Let S={e:e06} denote the string
space generated fromelement membership séx,

strings composing of the string

134140012230

X1

X2
Let
D, =[ U, U, ] be the searching domain Xf;

D, =[ U7,
ut.,u-_ be the lower bound and upper bound

of X;;

u2. ,u?_ be the lower bound and upper bound

of X,.

Then, equation (1) and (2) specify the relationship

between(X,, X,) and string
e=ge=¢ee BRL &

uﬁw} be the searching domain Xf;

5
Xl = u::nin + ( u}nax - ulmin)z(jizl ? 56 (1)
) ) 2 12 5%
X2 = umin + ( umax_ l"Imin) j=7 q 512 (2)

where e, j=1,2;-- ,1zdenote the elements taking

numbers 0, 1, 2, 3, 4 in the string.

Definition 2.5. A configuring (i, ) indicates the
i" segmental string and thg' element (position) in
the i" segmental string.
Once we setup

values  ofD, =[u,, U, |

min? “'max

andD, =[u},, U2, |, the fitness value of a objective

function f (x) fithess value is readily to calculate
according to equation (1) and (2).

d s N _ o th A natural question will be raised: why does GA not
an () ‘{9—92"'—@' fi) D m} e (Mun)  ofer the convergent power as high as the lambda
configuration string space 0@, . algorithm does? In traditional binary strings

Example 2.4A string with configuration triple (5,6,2) represented algorithms, the chance of appearance of

e= eerepresents a 2-dimensional candidate solutior O 1 element in the strings is 50% to 50% oheac
, . . The element repeated and unrepeated chances are
( X,, X, ) for Rosenbrock’'s function with two

_ equal, which let us feel difficult to draw any uglef
segmental stringsg ande, . For example,

information from both repeated and unrepeated

events respectively.
The first segmental string,, is constituted by the
first 6 elements, for example,= 1 3 4 1 4 0, which

[1/3]4]1] 4] of o 1

In the Table 1 we use configuration triple (2,6,2) to
specify the string. In other words, (2,6,2) represe
membership se®={0,1}, segmental string length 6,
and 2 segmental strings.

represents the variabl®, , while the second
segmental string, , is constituted by the seventh
element to the twelfth element, i.e., the secomxd si 1 2
elements in the string, for exampie~0 1 2 2 3 0,
which represents the variabk, . The string length  Similarly, in Table 2 (5,6,2 ) represents membership
| =2x6=12. The correspondence between eachset ©={0,1,2,3,4}, unit string length 6, and 2-
segment string andX can be also labelled as Ségmental string.

following:

Table 1 The binary element strings (2,6,2)

1 1
0 1

0 1
0 ]0

0 0 1 |1 0 1
0 0 1 ]0 1 0
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Table 2 The five-element (5,6,2 ) strings segmental string create the possibility that change
the elementj, (position) of thei"" segmental string
will have different impacts because different posit

has different weight. A(5,6,2) string, denoted by

ee---ee,g---e,, the blue-color elements are the

Assume that a column of strings is ranked accordinéIrSt segmental string, representing the red-color.

to their fitness values (from minimum to maximum), éléments are the second segmental string,
if we select top 5 ranked strings as a sample, sekepresentingx,. Logically, changes in elements
Table 2 the first knowledge we learn from it is that and e, will result in large changes ix and x,

their fitness values are less than any other stri®9  respectively, because the highest weigh® is

the other hand, in the Iamt_)da algorithm, the regmbat assigned to them, while changeseinand e, wil
chance of each element is 20%, Sedle 2 That . .
result in the smallest changes iR and X,

means that in the sample, if 3 out of 5 are repeate _ _ _
with a particular element at any position, then therespectively, because the lowest weigti00064is
repeated chance of the element in this position igssigned to them. Therefore, a well-constructed
60%, which is much higher than 20% (in binary String element shift scheme will have a balanced
string cases). This phenomenon is the Secon@lobal_searchmg capability as well as local fined
knowledge we would like to know. Even we might capacity.

interpret this phenomenon as a consequence of Example 3.1.Define u, =-10°, u = +10°,
randomization. However, under a perfect circulation pen u=u_-u, =2 10°. String 1 inTable 3

: . o
we might consider the extra 40% chance would bel 243012432 1lis the base for observing the

induced by their smaller fithess values. Thlsimpacts from string element changes. String 2

phenomenon shows us the convergent tendencghan . . )
. N ges the first element of the first segmentaigst
toward the optimal solution is higher than thatGa. in String 1 by adding 1 and the first element af th

divide element events into 3 categories: repeated o smallest_sh|ft N size at hlghest wel_ght 02 The
time element events, repeated two times elemen?hange inxand x, is qwte. large with dlstancg
events and unrepeated element events. The lambd@$>6854249.5. However, String 3 changes the sixth
algorithm draws useful information from all three €lément of the first segmental string by adding8 a
categories, to construct an intrinsic scheme tdwar the sixth element of the second segmental string by

2

O (N[NN
R[N lWw
NIENEN SR
wlwlwlw|s>

A|OIO[F|N
L=l
OIN(N AW
N[> lWwlw

1
2 3
3 2
3 2
2 3

W[k |O|O
O ||| O

global optimization. adding 3, which is the largest shift in size athieist
weight 0.000064 The change irx and x, is much
3. Featuresof string representation small with distance 202276452 Fable 3 lists the

. . ._changing effects for comparisons.
We should be aware that in searching and selecting ging P

candidate solution thek-algorithm utilizes the 1416 3 The Impacts of Weights in Global Searching
information contained in the value of an elemems, t 4| gcal Tune-up

element position in the segmental string, and the _
sequential order of the segmental string. Note that String X X, |Ax|
the transformation matrix plays a vital role for 5523072 | 3662720000 1751680000
linking a string of lengtmu, e=ee--- g, where the 43211
i" piece of the string, or thiesegmental string, with ziggcl) } 3 337280000] 5751680000 56568542495
lengthu, € =€, yufi-p2 & (512, n),and  [1243042
, . , - 43214 | -3460480000 | 1755520000 202276452.4
an n-dimensional Euclidean point'=(x, %+, X ).
In other words, the global search strength mechanis |t is critical to emphasize here that the globaitfiee

lies on that the weighting system, i.e., of a string algorithm is also materialized by thage
5 5* 5° 52 5 &° parameter setting, i.e., the setting(af,,u,,). The

—————— 0,0,00,0,0;, assigned to the _
largeru, = v, - u,,, the better global coverage is

5°'5°'5° 5850 "5
6 members in the first segmental string andintended.
55 5* 53 52 5l go° L Examining thé" component ofx, x , which is a real
{0’0’0’0’0’0’_'_'_’_ __} the weighting number, for example,x =7.5672 , traditional
system assigned to the 6 members in the secon@ptimization schemes may be shift=7.567zby a
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small increment, say, 0.005, it is intuitive that b 4.2 ) operator and A operator
changing at digit level of a real, the scheme remsai

at a local algorithm nature. Therefore, the glgball

and locally simultaneous searching feature of the o o
string scheme will definitely speed up the global

optimization algorithm. By repeated and unrepeated o o o o
(string) elements numerated from high weight

position (i.e. element of a segmental string) twdo

weight position within the strings (the candidate ° o ° o

solution strings), in terms of sort and pack scheme

repeatedly until the final optimized solution isifal. Figure 1. Cyclic behavior of operatot[g] (Left)
Our computation experiences show that in searching,q operatot™[e] (Right)

the final global optimal solution, it is often tltase
that the first 3 or 4 positions (high weight elersgn

in a string (if the string size is 6) could ade@lat
secure the main searching path toward the fina
optimal solution globally. Nevertheless, the lower g+1if €0{0,1,2,3

cell elements are able to change for fine-tuningn Ale] ={0 it e 0f b (4)

small increment manner, which allows the searching '

scheme to access the final optimal solution withwhereg is an element in a string.

amazingly high precision. Definition 4.2.4* operator for (54,n) configuration
string element is defined by

Definition 4.1.) operator for (8),n) configuration
Ptring element is defined by

4. Operatorsin lambda algorithm
. . . . ape1- /e life0{1233
In this section we will systematically explore the A [Q]:{4 it e0{ P (5)
mathematical operators in the lambda algorithm. For '
this purpose, it is necessary to introduce morewheree is an element in a string.
notations.

4.1. String vector 4.3. Cyclic behavior of a vector string

A string vector, denoted k&, is a column vector Defirlition. 43. Let e=ggp be a (5711”)
taking strings as its components. The dimensignalit configuration string, th& operation on string is
indicates how many strings are used to construct a

string vector. It is obvious that for (5,6,2) Ale]o A[e]A[e] A ¢]. (6)
configuration string vectorg' of dimensionality 100, Theorem 4.4.let e= geg-- g be a (5,u,| /u)
it represents as 100 pairs of variabksndX,. AS  configuration string of length=nu, whereu is the

matter of fact, a string vect&=(ej )le is a matrix  length of segmental string. Then

of elements g 0O, with size NxI. Figure 1 A0 = j(mods(r)) El 7)
intuitively a string vector dfig ) - where
gl Q1 Qg &7 Q12 A(n)[g]m/] A /][_q ,
g - Ql - %1 ) eze :%,7 %,12 (3) |: reEeatn times :|:| (8)
€oo €001 " Goos Gu17  Cuooa

(Note thatmod, ((Jis a modulo operator using 4 as

its quotient.)
Proof 4.5. According to Definition 4.1, applyin@
operator to a stringis just applying the operatdr

to each individual element in string, ¢ , without
any disturbance on the sequential order,Also,
recall thatA™® [q] is cyclic asn increases by step size
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1, eg, =0, 19[g]=21"e]=¢=0 . Hence, 4.4.A comparison operation

[e] Almods(n [e] In the candidate solution search procedure, we need
Corollary 4.6. Let ¢ be a string vector. Then to compare the objective function(x),xOR" at
_ _ different values of candidates and thus it is
A [eﬂ:/‘(mow))[é] inevitably to compare strings, at whidhwill be
40 F] _g (9) optimal.

—_____-__ T S T o e - -

Remark 4.7.Define €, €, &,04[¢|=1[4,] @ @ @ »‘ @ >‘
&= 7] 4[] % =2°[3] ana =4[],
We treat the string vectors within one cycle asghe Figure 3. A comparison operation of string vecebr

states of' : {ey. € &, &, €, }, seeFigure 2
Then if we prepar® string vectors, then in terms of
A operator, we will immediately expand t5string
vectors. In such a sense, we call it a®xpansion
operation on string vectors.

There are two kinds &f comparison operations, but
we only engage the first kind of comparison
operation within a strings vector.

Definition 4.9.1 comparison operation of the first
kind means that the value of the elemerollows

0-1- 2- 3- 4criterion to change.
Example 4.10Lete , € ,----- % are strings in string

vectore' . Let €, €, §,, are elements in any

string q_ﬁ respectivelyn=1,2;.-,10C. Then
For n=1:1:100-2
Fori=1:1:12
If &) = €y
eln|+1 - /‘[‘i :|
ELSE IF eln(i) = Q:(H-Z)

O

Figure2. A string vector€' and its cyclic vectors eﬁ(m) A [%}

_ END
Example 4.8Given a stringg in strings vectog : Definition 4.11.A comparison operation of the
1 (3[4]1] 4] 0] o] 1] 2] 2 3 ¢ second kind means that the value of the element
g follows 0 -~ 4 - 3~ 2 1criterion to change.

Example 4.12Let,e &, €, are strings in

The stringg will be expanded by applying , the

cyclic vectors with respect tg are :  String of _ —
N — string vectore' . Let €, €, §,, are elements

(0) state in the string vectef, , in any stringé,, respectivelyn=1,2,-,10C. Then
(1 [3]4]1]4] 0] of 1 2| 2 3 0 Forp=1:1:100-2

Stnnge} of (1) state in string vecteg[ Fori=1:1:12

2]4]of2]ol 1 1] 2] 3 g 4 4 'eu=dm

String g, of (2) state in the string vectsy Sy ~ 17 €y ]

(3loj1]s[ 1] 2] 2] 3] 4 4 G 3 ELSEIFE,=¢.,

Stnnge}_ of (3) state in the string vect% € - /]—1[%]

(4 11]2[4a]2[3] 3] 4 of of § § END

String e}(4) of (4) state in the string vect%, Furthermore, we state the assumption on the initial

set of string vectors.

[0]2[3[]0o]3[4f 4] of 1] 1] 2 4
All the strings generated will be in the same row
position in relevant string vectors.
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Initialization AssumptionLet the initial string vector
be €° =(é1°)) such all the elements in th&string
M x|

e are mutually independentz=1,2;-- M .
LetD=[u
objective functionf (x) defined in n-dimensional

Euclidean space". It is obvious D determines the
scope of searching globally. Mathematically, the
linear system linking the strings and the system

state x can be expressed by

|" be the searching domain for an

min ? umax

u-j

5u

u

Xl = Llmin + ( umax - umin)z ?
j=1

( ) 2u 52U—i
=u. + - Uu_.
X2 min umax min j;& q 52u (10)
nu 5”U*J'
Xn = l"lmin +(qnax - L'Imin) Z ? 5nu
j=(n-1)u+1
Let the weight matrix be
F _
5 5'
5 5
0 O — -+ = 0 0
O = 5 5' (1))
-1
0 0 O 0 51— . 2
L 5 5' |
and further, let
Xl min
— X2 . _ min . _ _
X=T i =)0 [ U = U™ Y (12)
Xn umin

and write stringe = e ¢--- gin column vector form,
(i.e.,nuxzcolumn vector of element), that is

S (13)

Then the candidate solution is a linear transfoionat
of the (5u,nuy configured string representation

64

= l_'lmin + ur Q|><nu ¢1u (14)

Definition 4.13. Letx9 =y, +yA9[d 0 {0,123},
then,

(1) ). (2. ). (),

is called the cyclic set of objective function vedu
with respect to string, . .

Definition 4.14. ( A comparison operation on two
strings) If we compare 2 stringsande, . Assume

X

(15)

that Stringe (candidate solution)’s fitness value is
better than string, 's, and then we managed some
change t@, . LetL be the length of strings ,e, .
Let g, ande, be one of the element of and
e, respectively, ang, (Jand g, ((Jbe 2 different kind
of A comparison operation functions.

_el ife=¢g
_[A7e] g =¢
gz(%i)_{ %i’ if qj;,__% (17)

Becausel comparison operation have 2 different
kind of functions, and each function apply on only

one single string vecter, so we may only describes
g(J)‘s applications as a sample for other similar

function.
In the definition 4.14, we only describe one kind
A comparison functiory([J. The other one function
is similar to g((J operation in string vectoe.
Definition 4.15. Given a string vectog,,, -
String e=-eg---e6, £ (\g—l)u+1'“

candidate solution has components. By ranking of
the fitness values from best to worst, we have a

sorted string vectar wheree, denotes any element

A
£ represent a

in e at n" row, I™ column. Thend Comparison
operation in strings vector defined as:

If n>3
/][enl]’ if & =& 7 G2
Aled fezey=e,y
g(&)=1 _ (18)
Al )[enl]' it & = €. = G2
€ if & 7 ?n—l)l * ‘(:1'1—2)I
where
p(/‘[Qﬂ])z p(%\ ol s ﬁ—z)l)"' (3n¢¢ & = (nez)l) (19)

=0.16+ 0.16= 0.32;
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p(1?[e:])=0.04,p( g) = 0.6¢

If n=2
Ale,], if e =e.
g(eﬂ)={ [e?',] " ef; qi)l) (20)
where
p(A[g,])=0.2 andp(g )= 0.t (22)
lfn=1
g(e)=¢ (22)

Note that at each looping time aA comparison

operation on whole string vect@will result in a
new conditional random variable. If denote

as g, t=0,2; 0, then {g,t=0,2; 1} is a

it

stochastic process and furthermore it is a Markov
Markov (decision) process due to the independent
Initialization Assumption. Because the decision for

choosing actionsA comparison operatiorgoesnot

Both A expansion andl comparison operations in
string vector are taken after ranking the stringtoe
according to the value of objective functiarx) .
After ranking, the fithess values corresponding to
stringse,,e_,, e, are supposed to be very close to
those corresponding to whole vector strings.
Therefore, what we need to find out are whether or
not some same elements exist in eack.oé . e,
(three strings) to ensure those repeated elements i
the strings are the reason why the fitness values a
similar. According to equation (20), we can see the
repeated elements, already separated from the
unrepeated elements, by taken an extra
A[(Poperation, the twice time repeated elements also

separated from the unrepeated elements by taken two
timesA[[JJoperation. Then one time and two times

rejoin with other elements
inA¥[e ], k=0, 1,2,3,drespectively.
Consequently, we can select only one string from

repeated elements

only depend on the present state but also conagrninrejoined 5 states™® [e:ew] , k=0,1,2,3,4 of strings.

prior states, so the process is not a simple MarkO\A

decision process, but more complicated.

4.5. A expansion operation

Definition 4.16.Given a string, ., in column vector
form, then the set of strings after an expansion

sl 6] [ A9 &], A9 &) A% g A2 d A w

is called thel expansion set.

Now we would like to examine the string state
change inA expansion set after & comparison
operation executed in string vector.

(23)

[f n=3
A(k) [gﬂ]/‘[eﬂ]' if &= %_1)| z 8_2)|
. Mele], ifeze, =g,
Aexpansmrg(qﬂ): “ [ ](ZE I] . | % )I 8 )l (24)
Ml [a]. if & =6y = g
el if g # & * Go
If n=2
. AYe, ] &), if & =6,
/]expansmn - =n = ' n-1)!
(9(<.) { Me,], if & %6 (23)
fn=1
/]expansion(g (eﬂ )) - /](k) [_%] (26)
where k=0,1,2,3,4n= 1,2;-N J= 1,2:L . L is the

length of string,N represent size of strings in string
vector.

65

fter carrying on the above process recursivelg, th
sequence of the fitness values of objective functio
will be convergent. The recursive procedure is show
in Figure 4 which demonstrates a dynamic Bayesian
network pattern.

D (@ 13 O @ G O @ @

o & [ e | e e
| ‘} ) —V@)—' | '} 4 40 i 4o _%;;_»
:%: ﬂy% gt :%: aCa
i i —».—> —%\9—»1 NN —».—. | L] (e
e el e e e
e e e ey W e
ENcalacsiuscalnce BIRcalnes
L@ EH @A BEH L RE R
Sle gl Sle el
T @y ) (G-
H Jw.aga‘a@@»
e e S e (e (e
I e |
O RO R e
B O B
Aol el elloalse
e e e

Figure4. A dynamic Bayesian networks (DBNSs)
representation ofl algorithm

Figure 5 gives the flow chart to express the
operations process sflgorithm.
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] A dynamic Bayesian networks (DBNSs) is a general

Randomly Initial 3 strings vectogs, & , & . .
[ Y gs veclos.&' e state-space model as an extension of Kalman Filter

Models and Hidden Markov model. General
speaking, a state-space model first specifies @ pri

‘ v p(X,) and a state-transition functiom(X,|X_,) ,
4 4 /—+—\
Apply A Apply A

and an observation functiop(Y,| X_,)

c last Apply A . . . .
expansion expansion time Best finess | | expansion It is critical that the observations are conditiona
on e on e one. it ctements | ("€ first-order Markov p(Y| X, Y.) = Y| X . The
v v a’:pr:;;ame' Markovian character of DBNs essentially guarantees
¢ expands & expand expansion on & expands the existence of the stationary probability of the
W || e, || Semiverse || ©g g | steady state.
T 0% elements, then || @& It is fundamental to recognize that algorithm
A 6{22) ,qzs) , we have 4 extra ] )
§ . e _stinas from bes ) . ) engages a mechanism of the DBNs. Such a
| I I T recognition drove out the long-time bothering issue
v why a A algorithm converges almost sure and the
Combine_ 15 vectqufr 4 stings as one; rank_thegsirin g|0ba| optimization can be achieved.
according to their fithess values from minimum to
maximun. denote the minimum fitness value as best fitr

5. Testing examples

\ 4

Does the best fitness
satisfy the stopping
condition?

As a conventional step to bring in a new global
optimization algorithm, we utilize the new algorith

to search the optima of four 30-dimensional testing
functions and three 10-dimensional test functidns.
addition, we use two extreme challengeable testing
functions. The string configuration for the lambda

[ Selecting first ranked 1] [ Selecting last ranked 1 ] algorithm engaged for the first three teSting is

Out of the
loop, finished
optimization

\ 4

strings vecto g™ strings vecto &= (5,4,120), but for Levy function is (5,3,90).
v Table 4lists conventional test indices for the four 30-
dimensional test functions.

Check whethee™' reaches the stationary probability you
setup? If yes, shrink the searching domain, refin@selecting i L. i .
strings ine™" , denote ag™ . Flip vertical of g™ as a new Table 4 Algorithm efficiency indices
vectoré:—“" frst, gt instead ofe™ st respectively. Search Ackley Dixon & Griewank Levy
indices Price
v Domain 30 30 30 30
v [-15,34 [-10,1™ | [-600,60¢" | [-10,14
h Time 180.32 167.12 74.41 104.94
Apply A Apply A Apply A (sec.)
comparison comparison comparison Loop 144 289 125 187
oneration oneration oneration
Probab. 0.9 0.8 0.8 0.8
control
As to the function specifications and searchednogti
Compare nevgt Compare new Compare newg® for the four 30-dimensional test functions, we list
with best fitness e’ with best with worst them as fO”OWing'
v v v
i 1. Ackley function: Number of variables:= 30. The
Back to start loo . . .
minimum is 0 whenx =0, i=1:--,30. Ackley

Figure 5. Flow chart to express the operations lUnctionin general takes the form:

process off algorithm f(&,-~~,>g):—20ex{—0.é§]— {‘%21 C‘(’Sﬂaﬁ)} n 27)

Bayesian networks (BNs) is a probabilistic graphica

model (GM), where an individual node in the GM | N€ searched minimum =7.9936E-015;

represents a random variable, while those edges

between the nodes represent the conditional OPtimal x°=1.0E-014x (0.0391 0.0857 0.1666
probabilites among the corresponding random 0.1666 0.1767 -0.1808 0.1631 0.1768 0.1790
variables. A GM enjoys certain degree of Markov -0.5370 0.2282 0.4305 -0.6646 0.1693 0.1778
property. See [2], [3], [8]. -0.1060 0.0743 0.1775 0.0127 0.1608.0093
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0.1357 0.0338 0.1007 0.0285 -0.3655 -0.0357Table 5 summarizes three 10-dimensional test
-0.3171 -0.1896 0.0224) functions. The search scheme utilizes (6,4,40ngptri
configuration.
2. Dixon and Price Function: Number of variables:

= 30, the minimum is 0 wher =0, i =1,---,30. Table 5.Algorithm efficiency indices

The function is defined by Search indices Michalewicp Rastrigin Rosenbrogk
Domain 10 10 10
. ) oA | [=9° | [=s9
2 . -
=(x =1+ ( _ ) 28 Time (sec.) 90.66 37.82 24.47
f (Xl’ ’Xﬂ) (Xl 1) ZZ : 2)6 X1 (28) Loop 200 174 100
= Probability control 0.8 0.4 0.98

Searched minimum =0.7463, optimal solution is
5. Michalewics Function: Number of Variablas=

x° =(0.2399 0.0866 -0.0012 -0.00040.0050 10. The theoretical minimum value is -9.66015

-0.0004 -0.0026 -0.0046 -0.0116 -0.0029 0.0030 SV VR
0.0023 0.0055 -0.0011 -0.0014 0.0005 0.0000 (s x) == Rsinl) s 1) (32)
0.0017 0.0225 -0.0161 0.0004 -0.00110G02 The searched minimum value = - 9.2562’ the
0.0289 0.0161 -0.0001 -0.0009 -0.00050023  optimal value is

0.0003) X°= (2.1987 15692 22179 1.9225 0.9947

3. Griewank Function: Number of variables=30. 1.5733 1.4516 1.7603 1.6588 1.2171)

The minimum is 0 wherx =0. Then -dimensional g Rastrigin Function: Number of Variables=10

Griewank function takes the form: The theoretical minimum value is 0 when=0,

n 2 n i=1,--,10.
f()&""’)%):Zﬁ_UCOS(X/\ﬁ)J’] 29) n
N i= i= f(xl,...,)‘]):—lm+2()?—1000$ 2’),()) (33)
Searched minimum =0 =)

Optimal x° =1.0E-007 *(0.0007 -0.00750.0229  The searched minimum =0, the optimal solution is
0.0295 0.0282 0.0106 -0.0046 0.0347 -0.0426 x°=1.0E-008x(0.4096 -0.0819 -0.0819 0.2458

-0.0098 -0.0229 0.0636 -0.0007 -0.0098 0.0374 (2458 -0.2130 0.1147 -0.1802 -0.4096 0.2458)
-0.0033 0.0111 0.0754 -0.0033 0.0164 0.0004
0.1540 0.2458 -0.0885 0.0360 0.1475 0.00207, Rosenbrock Function: Number of Variables=

-0.3008 0.0492 0.0557) 10. The general form of Rosenbrock Function is
. . . L n-1 2
4.. L.evy fgnctlon. Number of variables: =30. The f(&"'%):ﬂl()((f—z(ﬂ) +(x- ﬂ (34)
minimum is 0 whenx =1 i
n-2 R - The theoretical minimum is 0, wherx =1,
o) = 2 (3 =97 (a+ 2080 (ry + ) (30) i=1-,10. The searched minimum = 0.000194808,
+ sift @y, F+( Y- ;2( ¥ sif( ?XH)) the optimal
where x°=(0.9998 0.99969 0.99974 0.99933 0.99928
1 0.9991 0.998 0.99572 0.99137 0.98285)
Y =1+T’ i=%--n (31) The last two testing functions are extremely

challengeable. Table 6summarizes the two testing
Searched minimum =0.5840, optimal solution is functions testing results. The lambda algorithm
searching scheme utilizes (5,4,120) and (5, 4, 400)
x° = (1.0166 0.9980 0.9982 0.9919 0.9978respectively.

02377 03999 09944 10103 09965 0.9992 . o

1.0105 0.9773 1.0031 0.3994 1.0407 1.014q2Ple 6:Algorithm efficiency indices for 30-
200792 1.0009 09985 09957 1.0060 1.0ag7imensional Rosenbrock function and 100-
0.9937 03999 1.0037 0.9966 0.3933 0.39gdlimensionalsiff function

1.0108) Search indices Rosenbrock sin®®
Domain [-2.408,2.40F° [-10,14™
Time (sec.) 90.95 291.06
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Loop 100 100 then called the likelihood function with respect to
Probability control 0.60 0.3 parameter S@{, QI:I@.

8. Rosenbrock Function: Number of Variables:30,  Definition 6.1. Let K ={(x,8),i=12;-- N} be a
the minimum is 0 whenx =1, i=1..-,30. The failure-censoring data record, i.e.,
string configuration for searching lambda scheme is {

0 x, isanaturalfailure
1 X isacensore@vent

(5,4,120). 9 = (36)

The searched minimum = 2.5183

; o — then
Optimal x° =(0.9994 0.9973 0.9994 1.0024
1.0014 1.0003 1.0035 1.0007 1.0015 1.0007 o ( 1_1,( , ) ﬂ_( , ))
1.0004 1.0015 0.9971 0.9966 1.0001 0.9995 '-(‘?'K)—Hf X OR"x:0 (37)
0.9973 0.9997 0.9952 0.9991 0.9927 0.9856 =
0.9707 0.9473 0.9014 0.9520 0.9744 0.9714wheref is the failure density function andis the

0.9491 0.9008) reliability function.
9. sin°function: Number of Variables1 =100. The  Definition 6.2.The function then

theoretical maximum isn when x = jm+7/2, 1(81K)=In(L(81K)) (38)
j:O’]_,Z,..._ - -
is called the log-likelihood function.
f(xl,...,)%):zsir@(x) (35) Lemma 6.34,is an optimal point far(g|K)if and

only if it is an optimal point for(6|K).

The searched maximum value = 91.0671, the optimalNOte thatin((, whose base ie>1, is monotone

increasing. Therefore the patternsLifg|K ) will be
x*=(1.4857 -7.8411 -4.6816 -4.7119 -1.5208ye|l-maintained by (#|K)and the converse is also
-4.6401 1.5676 7.8522 1.6444 7.8734 -7.8784true. then
47178 -1.5417 -7.8683 1.5590 7.7531 7.8484
-1.5301 -4.7494 -4.8971 1.5430 -4.70743356 1(6, 1K) =maxI (8 K)}
-1.5826 4.7689 2.9632 -1.5465 1.6441.5685 - (39)
1.4859 1.5135 1.5899 1.5212 0.1591 -0.9106 B
15320 -4.7451 46183 4.7783 7.8759 15504 -(&1K)=ma{L(gK)}
1.5520 -4.8942 -1.5857 -1.5533 4.6714 1-5529I'urning our attention now to wave-like lifetime

1.6801 1.5276 1.5989 -7.8975 -7.8473 '4-743%istribution of Type |, (see [7], [8]), it has arfo:
-1.5183 4.7857 7.8521 4.7119 -1.5925 -1.6175

L6763 4.7724 -4.7648 -4.6491 1.5808 -7.8505 L\, F{_JX‘(V‘*SWGSJ ds] (40)
-7.8527 4.6484 3.7575 4.7969 -1.5098 1.4933 ) &

7.8250 1.7861 -1.4387 -1.5806 7.8622 -1.4867

-4.6982 -4.3371 1.5879 1.7464 -1.47368447  With two-parameter hazard function:

1.5872 1.5873 -1.5733 -7.9322 4.7021 1.5871 Sin ax

1.5891 -4.7056 1.6080 4.8077 -1.5593 1.5689 h(x)=y+>—

4.7446 -1.5889 -1.4475 -4.7321 1.7987) X (41)

In summary, the algorithm testing demonstrates x0[0,+), @ >0,y C

satisfactory result in accuracy and efficiency. Theorem 6.4([7], [8]) For the Type | wave-like
o distribution, the log-likelihood function is:
6. Likelihood-lambda procedure

N sin® ax
Likelihood function and procedure plays important |(01V|K)=Z(1—19i)|n[y+ )ﬂj

2

role in safety and reliability modelling, see [[10], i (42)
and [11]. In this section, we will investigate the _i]- y+sin2as ds
scheme to utilize the lambda algorithm for searghin = s?

the numerical solution to a likelihood function. ] ] o
The first-order partial derivatives are

6.1. Log-likelihood function

Let L(8]K)=f(x,8,%.9,: % Sy B) with f(CB)
representing the joint distribution of data. This is
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(aVIK) - sin( 2rx ) (8 %
,Z:;‘ Z+sin’ax
Aavic) ¢ £0-2) s,

= yx>+sinfax &

]-sm(2as)

'M

and the second-order order partial derivatives are

9% (a,yIK) _ & 2c0g Z/)g)(y>f+ siﬁa),()— sif( @x)

a - = (y)g2+sinza>g)2 (1_12))ﬂ
23 shay)
F(ayIK) _ &% (1-4) sif 2rx)
0ady =) (y)qz +sin2z7/>§)2

0 (a,yIK) 2 x}(1-8)
oy lzl(yxz +sin2m§)2

derivative  or non-derivative  Likelihood-GA
procedure if they do not mind the computation time
consumptions. To reach a better efficiency, we
intend to switch our attention to replacing the GA
part by lambda algorithm.

6.2. An likelihood-lambda algorithm example

The ML-lambda procedure for searching solutions to
the joint non-linear equation system:

ol (a,y|K)/6a=0
dl(a,y|K)/oy=0
because the integral term appears in the wave-like

log-likelihood function. The searching results the
two models are listed ihable 7

(48)

Table 7 The MLE of parameters for wave-likelihood

Theorem 6.5.For the Type Il wave-like lifetime lifetime distributions

distribution with 2 parameters, and a hazard famcti

. P Type I Il
of the form h(x)=y+sin(@x)/x, the log-likelihood G 6.5202 0.0412
function in the presence of both failures and cesto (0.00169) (%%1936110)
data is (0.0006961)
. sin(a % 0.0001 0.0001
_ in{ax (0.00001) (0.00001)
(a yIK _iz_ll [ ] 0.0206
B (0.0000085)
N N % sin(a 1(@,71K) -3293.1074 -1719.2372
—V %= Z,[ -36496.9421
= = Accuracy 5.5807e-008 2.5757e-008
- ; A 2.1534e-006
The first-order partial derivatives are Computation | 17,0384 sec. S
time 74.9782 sec.

dl(a,y|K) :i(l_ﬁ) x, coqax )

da — Y yx +sin(ax)
23 sifry)
ol (ay|K) _ &
dy ;(1 19')y>g+sm(a>§) ;’Q

and the second-order partial derivatives are

(a y|K N v yx sin(ax )+ 1
TR (o)

(7122 Slfms)jlgx cderx)
azl(a,y|K):_ZN:(1 9 )x? cofax)

daoy = (V’ﬂ +Sin(‘”§))2
FllaylK) _ ¢ (-9)¥
6y2 = (y)g +Si|"|(0’)§ ))2

In the Table 7 for the parameter estimate columns,
the top figures are the estimators whereas thedgyu
in brackets are estimated standard deviations.

It is observed that in the case of Type |, thet fixar
gives the local maximumi(4,y|k)= -3293.1074),

the second is a global 1(a,7/k) = -1719.2372),

whereas one suspects that the Type Il model is a
better description of the failure/repair process in
operation here i(a,y|k) = -36496.9421). We found

two optimal solutions for Type Il model (blue iseth
first, black is the second). The following three
figures plot the estimated hazard functions and e-
score plots.

Remark 6.6Theorem 6.4 and 6.5 facilitate classical
maximum likelihood estimation with derivatives up
to the second order for the two types of wave-like
lifetime distributions. Reliability engineers caseu
these two theorems for modeling and analysis in
traditional Newton-Raphson procedure or use semi-
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Figure 6 The estimated hazard function of Type |

wave-like lifetime distribution £ =6.5202,7=0.0001)

and approximated e-score plot

i I I i
(9 1 2 3 4

Figure 7. The estimated hazard function of Type |

wave-like lifetime distribution £=0.0412 7= 0.0001)

and approximated e-score plot

70
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Figure 8 The estimated hazard function of Type Il
wave-like lifetime distribution £=0.0961,7=0.0206)
and approximated e-score plot

Remark 6.7The e-score plot (Lawless [11]) is based
on a fact that

é= } h(sa,y) ds exp(- ¥ (49)
and
E[é(i)] :gn—:ll+1 (50)

whereg, is the i" order statistic in calculated e-
scoreqs.&. .} - E-score plot plots & , E[éw]),

i=1,2,-- N . If the plot demonstrates a straight-line
then the good-fitness of the maximum likelihood is
good enough. From the three e-score plots, we see
similar patterns, but Type | model global result in
Figure 7(4=0.04127= 0.0001) convinces us more.

7. Conclusion

In this paper, we introduce the new lambda algorith
first, and then investigate the underlying operatin
mechanism of the lambda algorithm. Furthermore,
we explore the merging the lambda algorithm with
maximum likelihood procedure. We have a detailed
illustrative application. In the future, we willrste to
explore more safety and reliability applications.
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