PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of plasma spraying parameters on microstructure and hardness of aluminium-bronze-polyester-YSZ composite coatings for plain bearings applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ parametrów natryskiwania plazmowego proszku brązu aluminiowego z poliestrem oraz dodatkiem tlenków cyrkonu stabilizowanego tlenkiem itru na mikrostrukturę i twardość powłok do zastosowania na łożyska ślizgowe
Języki publikacji
EN
Abstrakty
EN
The article presents the results of preliminary tests of a composite coating of aluminium bronze with additions of polyester and zirconium oxide stabilized with yttrium oxide. The coating was sprayed at variable parameters of hydrogen flow rate (0 NLPM, 4 NLPM, 8 NLPM) and burner current (300/500/700 A). The microstructure of the produced coating, regardless of the process parameters, was characterized by the presence of large porosities constituting polyester residue. The obtained porosity was approximately 20–30 vol. %. The analysis of the chemical composition showed a uniform distribution of YSZ oxides in the structure of the coating in the form of lamellar bands. There was no significant impact of process parameters on the coating hardness in the range of 160–170 HV02.
PL
W artykule przedstawiono wyniki badań wstępnych kompozytowej powłoki brązu aluminiowego z dodatkami poliestru oraz tlenku cyrkonu stabilizowanego tlenkiem itru. Powłokę natryskiwano przy zmiennych parametrach natężenia przepływu wodoru (0 NLPM, 4 NLPM, 8 NLPM) oraz natężenia prądu palnika (300/500/700 A). Mikrostruktura wytworzonej powłoki, niezależnie od parametrów procesu, charakteryzowała się obecnością dużych porowatości, stanowiących pozostałość poliestru. Uzyskana porowatość wynosiła około 20–30% obj. Analiza składu chemicznego wykazała równomierne rozmieszczenie tlenków YSZ w strukturze powłoki w postaci lamelarnych pasm. Nie stwierdzono istotnego wpływu parametrów procesu na twardość powłoki mieszczącą się w zakresie 160–170 HV02.
Rocznik
Tom
Strony
90--95
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
  • Research and Development Laboratory for Aerospace Materials, Rzeszow University of Technology, Rzeszów, Poland
  • Research and Development Laboratory for Aerospace Materials, Rzeszow University of Technology, Rzeszów, Poland
  • Research and Development Laboratory for Aerospace Materials, Rzeszow University of Technology, Rzeszów, Poland
  • Research and Development Laboratory for Aerospace Materials, Rzeszow University of Technology, Rzeszów, Poland
  • CRTurbo, Rzeszów, Poland
Bibliografia
  • [1] M. V. S. Babu, A. Rama Krishna, K. N. S. Suman. 2015. “Review of Journal Bearing Materials and Current Trends.” American Journal of Materials Science and Technology 4(2): 72–83. DOI: 10.7726/ajmst.2015.1006.
  • [2] R. R. Dean, C. J. Evans. 1976. “Plain Bearing Materials: The Role of Tin.” Tribology International 9(3): 101–108. DOI: 10.1016/0301-679X(76)90032-3.
  • [3] G. Shi, X. Yu, H. Meng, F. Zhao, J. Wang, J. Jiao, H. Jiang. 2023. “Effect of Surface Modification on Friction Characteristics of Sliding Bearings: A Review.” Tribology International 177: 107937. DOI: 10.1016/j.triboint.2022.107937.
  • [4] G. Barbezat. 2005. “Coating Deposition of Bearing Materials on Connecting Rod by Thermal Spraying.” Thermal Spray 2005: Proceedings from the International Thermal Spray Conference: 642–645. DOI: 10.31399/asm.cp.itsc2005p0642.
  • [5] J. Wen, Z. Zhang. 1986. “An Investigation of the Self Bonding Mechanism of Aluminum Bronze Coatings Sprayed by Electric Arc Process.” In: Advances in Thermal Spraying: Proceedings of the Eleventh International Thermal Spraying Conference, Montreal, Canada September 8–12, 1986. New York: Pergamon Press.
  • [6] K. S. Tan, R. J. K. Wood, K. R. Stokes. 2003. “The Slurry Erosion Behaviour of High Velocity Oxy-Fuel (HVOF) Sprayed Aluminium Bronze Coatings.” Wear 255(1–6): 195–205. DOI: 10.1016/S0043-1648(03)00088-7.
  • [7] R. C. Barik, J. A. Wharton, R. J. K. Wood, K. S. Tan, K. R. Stokes. 2005. “Erosion and Erosion-Corrosion Performance of Cast and Thermally Sprayed Nickel-Aluminium Bronze.” Wear 259(1–6): 230–242. DOI: 10.1016/j.wear.2005.02.033.
  • [8] M. Winnicki, A. Baszczuk, A. Gibas, M. Jasiorski. 2023. “Experimental Study on Aluminium Bronze Coatings Fabricated by Low Pressure Cold Spraying and Subsequent Heat Treatment.” Surface and Coatings Technology 456: 129260. DOI: 10.1016/j.surfcoat.2023.129260.
  • [9] S. Alam, S. Sasaki, H. Shimura. 2001. “Friction and Wear Characteristics of Aluminum Bronze Coatings on Steel Substrates Sprayed by a Low Pressure Plasma Technique.” Wear 248(1–2): 75–81. DOI: 10.1016/S0043-1648(00)00520-2.
  • [10] J. Chen, J. Yang, X. Zhao, Y. An, G. Hou, J. Chen, H. Zhou. 2014. “Preparation and Properties of Poly-(p)-Oxybenzoyl/Aluminum Bronze Composite Coating by Atmosphere Plasma Spraying.” Surface and Coatings Technology 253: 261–267. DOI: 10.1016/j.surfcoat.2014.05.052.
  • [11] T. Aissou, J. Jann, N. Faucheux, L. Ch. Fortier, N. Braidy, J. Veilleux. 2023. “Suspension Plasma Sprayed Copper-Graphene Coatings for Improved Antibacterial Properties.” Applied Surface Science 639: 158204. DOI: 10.1016/j.apsusc.2023.158204.
  • [12] J. E. Döring, R. Vaßen, G. Pintsuk, D. Stöver. 2003. “The Processing of Vacuum Plasma-Sprayed Tungsten-Copper Composite Coatings for High Heat Flux Components.” Fusion Engineering and Design 66–68: 259–263. DOI: 10.1016/ S0920-3796(03)00302-8.
  • [13] H. Xu, T. Fu, P. Wang, Y. Zhou, W. Guo, F. Su, G. Li, Z. Xing, G. Ma. 2023. “Microstructure and Properties of Plasma Sprayed Copper-Matrix Composite Coatings with Ti3SiC2 Addition.” Surface and Coatings Technology 460: 129434. DOI: 10.1016/j.surfcoat.2023.129434.
  • [14] M. Góral, T. Kubaszek, W. A. Graboń, K. Grochalski, M. Drajewicz. 2023. “The Concept of WC-CrC-Ni Plasma-Sprayed Coating with the Addition of YSZ Nanopowder for Cylinder Liner Applications.” Materials 16(3): 1199. DOI: 10.3390/ma16031199.
  • [15] M. Góral, T. Kubaszek, B. Kościelniak, D. Stawarz. 2024. “The Influence of Plasma Spraying Parameters on Microstructure and Porosity of Bronze-Polyester Coatings for Plain Bearings Applications.” Solid State Phenomena 355: 117–122. DOI: 10.4028/p-fdcdp2.
  • [16] P. Pędrak, K. Dychtoń, M. Drajewicz, M. Góral. 2021. “Synthesis of Gd2Zr2O7 Coatings Using the Novel Reactive PS-PVD Process.” Coatings 11(10): 1208. DOI: 10.3390/coatings11101208.
  • [17] J. Yang, Z. Li, G. Hou, Y. An, H. Zhou, J. Chen. 2015. “Sliding Friction and Wear Behaviors of Plasma Sprayed Aluminum-Bronze Coating in Artificial Seawater.” Surface and Interface Analysis 47(3): 390–397. DOI: 10.1002/ sia.5724.
  • [18] C. Ju, Q. Li, Z. L. Wang, Q. H. Song, J. J. Li, Z. P. Sun, Y. F. Zhang. 2021. “Reaction Mechanism Comparison of AlSi-Polyester and Aluminum Bronze/Polyester Plasma Spraying.” Digest Journal of Nanomaterials and Biostructures 16(4): 1411–1425.
  • [19] J. Yang, Y.-L. An, X.-Q. Zhao, J. Chen, H.-D. Zhou, J.-M. Chen. 2014. “Preparation and Abradability Evaluation of Aluminum Bronze Polyester Abradable Sealing Coating.” Journal of Materials Engineering 4(9): 8–13. DOI: 10.3969/j.issn.1001-4381.2013.06.001.
  • [20] L. Łatka, M. Szala, M. Nowakowska, M. Walczak, T. Kiełczawa, P. Sokołowski. 2023. “The Effect of Microstructure and Mechanical Properties on Sliding Wear and Cavitation Erosion of Plasma Coatings Sprayed from Al2O3 + 40 wt% TiO2 Agglomerated Powders.” Surface and Coatings Technology 455: 129180. DOI: 10.1016/j.surfcoat.2022.129180.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b470a218-2925-4b70-b1e7-54db365a836c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.