
171 

INFORMATION
SYSTEMS  IN 

MANAGEMENT Information Systems in Management (2015)  Vol. 4 (3)  171−182

MANAGING COMPLEX SOFTWARE PROJECTS 

PAWE! JANCZAREK,  JANUSZ SOSNOWSKI

Institute of Computer Science, Warsaw University of Technology

In the paper we present our experience with development and maintenance of 

complex software systems.  In particular, we concentrate on monitoring related  

development, testing and debugging processes. We have analyzed the contents of 

collected reports (provided by different tools) covering many projects and defined 

several metrics and statistics helpful in managing complex projects and achieving 

high quality software. Moreover, we have identified lacking data which could im-

prove these processes. 

Keywords: Software Development and Maintenance, Testing, Project Monitoring, 

Data Analysis 

1. Introduction 

Contemporary information systems are becoming more and more complex in 

software. They are characterized by long time development involving many engi-

neers (developers, testers, debuggers, project management) followed by software 

maintenance. In big projects it is important to manage and monitor all these pro-

cesses. There are various standards and methodologies providing general rules on 

how to deal with these processes [11, 12, 17]. In particular, they underline the need 

of monitoring various aspects characterizing the progress, effectiveness and quality 

of the involved processes. For this purpose various commercial or open source 

tools have been developed to collect data on the project progress, they are useful in 

project management decisions. There are many publications devoted to specific 

problems. Most of them deal with the flow of development processes at some ab-



172 

stract level, e.g. workload within different development phases [13], prediction of 

reliability or other features (based on derived analytical models) [3, 5, 14, 18]. 

Having gained some experience with commercial big projects we present the 

capabilities and limitations of monitoring development and maintenance processes 

in relevance to typical data repositories (test progress, problem handling reports) 

created and managed in such projects. We give an outline of related problems con-

sidered in the literature and confront them with our experience. In general, we have 

observed abundant information in the created repositories which results from more 

complex models of development and debugging as well as from the capabilities of 

the used supporting tools (e.g. Redmine, TestLink, Mantis Bug Tracker, TRAC). 

We concentrate on monitoring the progress of testing and handling detected prob-

lems during system development and maintenance (exploitation). Having analyzed 

various collected data from real projects targeted at services in telecommunication 

domain (class of CRM systems) we propose various analyses schemes which are 

helpful in project management. They provide more accurate evaluation of problem 

handling processes, resulting in quality improvement of software projects. 

Section 2 systemizes problems of project monitoring. Section 3 presents the 

main features of available tools and related data repositories. The range and useful-

ness of data analysis are illustrated in section 4. Final conclusions are briefly summa-

rized in section 5. 

2. Project monitoring problems 

Software project development involves product specification, design, imple-

mentation and testing. The resulting software product is thereafter delivered to the 

end users or the market and then maintained. In complex projects all the related 

activities are time consuming, distributed among many actors and they have a big 

impact on product quality and its cost. Hence, an important issue is to assess these 

processes in order to identify bottlenecks (inefficiency) of the processes and intro-

duce necessary improvements or corrections. 

The assessment process needs collecting appropriate characteristic data on 

performed activities and their effectiveness. In the literature there are many studies 

related to these problems, however most of them rely on repositories storing failure 

detection times [14-16, 19]. These data are useful in so called software reliability 

growth modelling (SRGM). SRGM models are derived using recorded error detec-

tion times and they provide the capability of assessing test effectiveness and  prod-

uct reliability, e.g. the needed test time to achieve the specified reliability level, the 

number of the remaining errors [14, 18]. Some enhancements can be included to 

distinguish several failure severity levels, non-perfect corrections [10], testing ef-

fort changes [4], etc. ([15]). This is product oriented analysis. Another approach is 

targeted at assessment of development and maintenance processes. Here, we can 



173 

trace efficiency and work impact in different processing phases (e.g. designing, 

testing, problem analysis,  correcting, retesting,  deployment). To characterize 

these processes various indicators or measures and associated interpretation can be 

proposed in relevance to different abstraction levels, e.g. completion time of tasks, 

failure detection and correction rate, failure handling progress within different 

stages, testers effectiveness, users activities, upgrade changes, etc. The introduced 

measures can be categorized, e.g. describing customer satisfaction, development 

and maintenance costs, usage of human and technical resources, correlation with 

assumed time schedules.   

Some interesting papers based on case studies deal with cumulative flow dia-

grams (CFDs [13]). They allow to detect partially done work, bottlenecks, discon-

tinuities in workflow, excessive hand-overs, waiting and service (problem han-

dling) times, etc. The y-axis of the CFD shows the cumulative number of problems 

(tasks, requests) in relevance to time (x-axis). CFDs comprise several increasing  

line plots each corresponding to the appropriate phase. The top-line relates to the 

total number of inflow problems, the second line from the top presents the hando-

ver from the first phase to the second one, etc. For specified time moment x the 

distance between the top line and the succeeding one presents the work in progress 

(expressed in the number of problems) in phase 1, etc. CFDs illustrate flow conti-

nuity and throughput. Line flatness or low upslope as compared with an upper line 

relates to continuity problems, e.g. longer inactivity periods which may later result 

in some overload (typical for integration testing phase). The throughput problem 

arises while the handover of phase i is higher than in the phase i+1 (bottleneck 

situation of more problems flowing in than out).  

CFDs are useful in the case of a small number of phases (problem handling 

states). They are not satisfactory in the case of more states, moreover they do not 

show loopbacks, which we have identified as an non negligible effect in real pro-

jects. Hence, we have developed more sophisticated graph model PHG (problem 

handling graph) described in [7]. The nodes correspond to problem handling phases 

(states) and edges describe transitions. This graph is correlated with a data base 

describing characteristics of problems and handling times for each problem.  

To derive product or process oriented metrics we have to collect appropriate 

data during development and maintenance. This is the basis for statistical process 

control (SPC) which is helpful to optimize processes and assure high product quali-

ty [5, 13, 17]. Many software companies improve their development processes 

according to CMM, CMMI or other concepts [11, 12], however SPC approach is 

rarely applied. Quite often software development companies use various tools to 

create data repositories relevant to these processes. In practice, they comprise a lot 

of data which is neglected or not analyzed in a systematic and formalized way. On 

the other hand some important data is not collected. In the literature the infor-

mation contents was neglected and most papers used only some selected data.  



174 

We have analyzed various repositories related to real long time projects and 

tried to identify interesting data for management authorities. In the sequel we out-

line the capabilities of collecting such data using some popular tools. As compared 

with other approaches discussed in the literature we deal with abundance of data in 

problem report repositories and perform fine-grained analysis. 

3. Tools for collecting data 

There are many tools (commercial and free) supporting software project man-

agement. They are used in reputable or big companies and less popular in small 

software companies. These tools are targeted at different aspects, e.g. monitoring 

project progress in relevance to release deadlines, monitoring testing or problem 

handling activities. Usually, they provide a lot of data stored in some form of re-

positories, handle multiple projects simultaneously and provide rich GUI interfaces 

accessible via web browser. The structure and contents of these repositories can be 

configured. In this section we give an outline of possibilities of some popular tools 

which are used by many software development companies.  

TestLink is a tool (http://www.testlink.org) designed for test case manage-

ment. It provides a  centralized repository for managing requirements and tests for 

project/system. It supports all testing stages (requirements specification, test plan-

ning, preparation of test scenarios, test cases). It assures flexible management of   

user roles and provides reporting on test execution (including visualization of re-

ports, related metrics, statistics, graphs generation), which is useful to monitor 

progress of test cases or scenarios. It can trace the implementation of test cases for 

many environments (e.g. testing, development, production). It can cooperate (ex-

change information) with error/problem management tools (e.g. Bugzilla, JIRA, 

Mantis BT). 

TestLink  repository stores data on tester activities and roles,  test cases and 

scenarios,  test plans and assignment of test cases (time scheduling), test results, 

etc. The whole repository comprises about 60 tables, which cover all these data. 

This repository can be adapted to the requirements of the project - for example 

specific attributes. 

The main entities used by TestLink are: test case, test suit, test plan, test pro-

ject and tester (user). Test case describes a testing task using steps (actions), and 

expected results. Test cases are the building blocks of TestLink. Test suite groups 

test cases into units. It arranges test specifications into logical parts. Test plan is 

created for test cases and specifies their execution time schedule. Each test plan can 

include releases (builds), milestones, user assignments and finally test results. Test 

project consists of test specification with test cases, requirements and keywords. 

Test project is a persistent object through lifetime of the project in TestLink.   



175 

Each TestLink user has assigned roles, which grant available TestLink fea-

tures to this user. Tester and quality assurance (QA) leader, can create test cases, 

run those test cases, save results or adjust them (make small changes). QA leader is 

also responsible for managing the whole test project. User with this role can create 

test plans, generate test reports or adjust schedules, etc.  

Redmine is a tool (http://www.redmine.org) designed for project management. 

It comprises a centralized repository for managing requirements, version manage-

ment and time tracking of various issues. Redmine repository comprises data on 

various issues, versions, projects, user roles, etc. It can be supplemented with ex-

tension fields, attachments, communication messages, etc. The whole repository  is 

based on almost 60 tables. An important feature is the capability to extend the data 

model (overall repository model is fixed, however custom fields can be defined). 

Redmine repository is used for tracking requirements and their analysis. It is help-

ful to create work items and assign them to developers. Redmine includes tables for 

storing data changes describing related issues. This functionality is very useful for 

tracking and analyzing changes, comparison of revisions, etc. Redmine provides 

also the ability to create and store wiki pages. 

The Redmine includes different type of timelines: Gantt charts, calendar, 

roadmap, deadlines, and other features that help keeping track of what's going and 

what is the status of the project. Redmine supports task assignments, bug-tracking 

and ticketing, allowing project managers to track progress of each feature, problem 

handling, and plan resources in advance. Redmine has also functionalities for vari-

ous notifications (e.g. emails, RSS feeds) and document management. Like 

TestLink, Redmine can be configured to protect sensitive data. 

Mantis Bug Tracker is a bug tracking system (https://www.mantisbt.org) 

which can serve also as a project management tool. It supports and integrates with 

many web based version  management systems (e.g. SCM, GitHub, SourceForge), 

and admits integration of options (plug ins). Some mechanisms are available to 

visualize relations between various issues and prepare documentation (it includes 

change logs, audit trials, related to registered issues). They also provide  multi-

level access control, built-in search engines and report generation.  

In Mantis Bug Tracker we can distinguish two repositories. The first one 

comprises tables with bug data. Information on bugs can be extended with custom 

fields, notes, attachments, etc. Some tables keep information on versioning, chang-

es of data about bugs, relationships between bugs (e.g. common source of two 

bugs). The second repository relates to project configuration (including hierarchy, 

user roles, profiles and preferences). Additional technical tables relate to configura-

tion data about plugins, email and other notification data. 

 TRAC is a bug tracking system (http://trac.edgewall.org) with project man-

agement features. It allows to track changes in issue descriptions, and also can help 

creating links (and  integrate) between bugs, tasks, changes, related files. One of 



176 

functionalities of the TRAC is a timeline, that shows all current and past project 

events (gives an overview and tracks the project progress). TRAC provides a 

roadmap, which shows the plans ahead, lists the upcoming milestones, etc.  It in-

cludes advanced  hyperlinking options (to hyperlink information between bugs, 

revisions and wiki contents), fine-grained permissions options and customized 

reporting.  

In TRAC the progress of individual bugs, requests, and other issues, are 

tracked using unique tickets (sequential numbers). Each detected problem receives 

a ticket. All changes for bug (ticket) are recorded and they can be viewed in the 

timeline for its status changes. There is also a simple way in TRAC, to connect 

overlapping tickets (where users report the same thing). TRAC has also extensive 

searching and filtering options for tickets by version, severity, owner, project com-

ponent or priority. One of the unique things of TRAC is a timeline of each individ-

ual ticket. Project changes can be viewed in relevance to chronology of events 

(code changes highlighted). TRAC provides GUI for browsing and management 

version management tools (e.g. SVN, CVS, Git or other SCM systems). TRAC 

capabilities can also be extended with plugins. 

We had a possibility of analysing several repositories collected during devel-

opment and maintenance of some real projects. We have found that they comprise 

a lot of data and that the companies used them in a limited way. Hence, we decided 

to drill down the contents of these repositories to assess the value of the comprised 

information as well as to propose some measurement and evaluation schemes (dis-

cussed in section 4).  As compared with published results in the literature we have 

observed the possibility of more detailed and fine-grained analysis. 

4. Analyzing project repositories 

We have analyzed many repositories of real projects from two companies. 

Here, we concentrate on 13 projects within this group projects P1-P11 were man-

aged using custom tool similar to Redmine, however the history of state changes of 

problem reports have not been registered, project P12 used Mantis Bug Tracker, 

and P13 TestLink tool. In classical approaches authors use the notion of failure, 

bug or error, we have generalized this notion as problem. In particular, the regis-

tered problem after analysis may be rejected as falsely identified (e.g. due to in-

competence of tester or user) or not important. Analyzing problem handling we 

distinguish user and tester perspectives and trace related handling processes which 

in practice may involve many intermediate states starting from registration, analy-

sis, correction, validation, inclusion in the release, etc. In the literature problems 

(bugs) can be open or closed. In the analyzed projects we distinguish many reasons 

for closing problems, which better describe development and maintenance process-

es. Various statistics we have published in [6,7], in this section we give other com-

plimentary statistics and interpretations. Moreover, we identify the lacking infor-



177 

mation which could improve assessment of development and maintenance process-

es, the more that many tools (section 3) give such possibility, unfortunately ne-

glected in practice. 

Tools related to managing software testing (e.g. TestLink, compare section 3) 

provide the capability of tracing the progress of testing, e.g. plots of executed test 

scenarios, test cases in time in relevance to the assumed deadlines, correlation with 

system modules, correlation with testers, etc. An interesting issue is to identify the 

statistics of test distribution results. In general, we can distinguish passed (P - no 

problem identified), failed (F - incorrect behavior of the tested object) and blocked 

(B - test cannot be completed due to some problems e.g. lack of cooperating mod-

ule) tests. This is illustrated in tab. 1 for project P13. Columns show the results for 

the specified weeks. The test preliminary phase relates to weeks 1-29 and covers 

small number of executed tests due to tester learning activities. Failed and blocked 

tests result in registration of the problem and initiating its handling, which is usual-

ly handled by other tools (e.g. Mantis BT, TRAC, section 3) and is discussed later 

on. Usually, resolution of blocked tests problems is simpler than the failed ones 

(e.g. code correction needed). Having collected such statistics on testing we can get 

some hints for predicting the number of problems in function of designed test cas-

es. This prediction could be more precise if correlated with complexity of tested 

modules (e.g. lines of code, McCabe or Halstead measures [8,9]), unfortunately 

this is scarcely available information in repositories. Another issue is measuring 

engagement of testers (e.g. man hours), usually neglected in repositories.  

Table 1. Distribution of test results in time for project P13 

week 1 11 14 26 30 31 32 34 35 36 

B

F 

P 

1 

2 

1 

1 

1 

8 

0 

1 

1 

0 

1 

0 

0 

3 

82 

7 

9 

65 

0 

0 

6 

0 

26 

52 

45 

13 

11 

0 

3 

14 

week 37 38 39 40 41 42 43 44 45 46 

B

F 

P 

109 

76 

220 

75 

34 

124 

69 

77 

134 

27 

47 

156 

24 

11 

97 

0 

2 

3 

0 

0 

23 

0 

0 

9 

0 

0 

15 

0 

0 

12 

Analyzing problem handling processes we use PHG graphs (section 2).  In the 

case of project P12 we had relatively rich information in the repository to trace 

problems in detail. The complete PHG graph comprised 26 states (nodes) and 280 

edges. However, many states have been visited by a small number of problems, so 

they do not describe typical situations. Hence, we have introduced the capability of 

analyzing reduced graphs e.g. taking into account a specified number of related 

problems. In fig. 1 we give such graph assuming minimum 50 problems in a node 

(it is worth noting that the total number of registered problems was about 4000). 

The edges of the graph are labeled with percent of problems transferred to another 

node. Such graph visualizes typical problem handling paths. The developed tool 



178 

allows us to trace also processing times in each node, dominating paths, etc. The 

nodes of the graph relate to the following states: problem registration (S4), general 

analysis (S5), request for additional information (S6), problem withdrawing (S7), 

code correction (S8),  fix prepared (S9), fix uploaded (S10), problem reopened 

(S11), transfer to test preparation (S12), technical analysis - it involves IT envi-

ronment (S13), testing (S14), testing suspended (S15), problem completed (S16), 

rejection acceptance (S20). In graph of fig. 1 we have deleted states S1-S3 of initial 

analysis. Moreover, transitions (incoming and coming out) related to nodes with 

less than 50 problems are not included.   

Figure 1. Reduced PHG graph for P12 

An interesting issue is to identify and analyze the looping in problem han-

dling, which is neglected in the literature, however it shows some problems in han-

dling processes. In project P12 we have identified 1200 loops which involved from 

2 to up 12 states. Each loop can be characterized by its structure (sequence of 

states) and saturation (number of circulating problems), for each problem we could 

also check the number of iterations in the loop. However, in most cases it is one. 

The loops with the highest saturation (shown in numbers) are as follows:  

{S5|S7|S11|S5} � 403; {S5|S6|S5} - 306; 

{S7|S11|S5|S7} � 258; {S13|S7|S11|S13} � 232; 

{S5|S8|S9|S10|S12|S14|S11|S5} � 210; 

{S14|S15|S14} � 206; {S11|S5|S7|S11} � 180; 

{S13|S6|S13} � 162; {S13|S5|S13} � 155; 

{S7|S11|S13|S7} � 134; {S14|S11|S5|S8|S9|S10|S12|S14} � 129; 

{S12|S14|S11|S5|S8|S9|S10|S12} � 111; {S6|S5|S6} � 102; 

It is worth noting that 881 loops involved only a single problem. There were 

259 loops with 2-10 problems, 17 with 11-20 problems, 24 with 21-99 problems, 



179 

and 13 with more than 100 problems.  In this last group the average circulation 

time was in the range 0.34-2.9 days. Minimal and maximal times were 0 and 65 

days, respectively, Relatively higher average times occurred for loops with low 

saturation.   

 Another issue is comparing development and maintenance processes over 

many projects, or program modules. We had such possibility in relevance to pro-

jects P1-P11. As compared with project P12 the number of problem states was 

lower (8 states), moreover information on state changes was not available, however 

for each problem we had its appearance and completion time stamps, problem de-

scription, completion reason, etc. Despite these limitations we could derive some 

interesting features. In particular, we have compared the number of registered 

problems by testers (T) and users (U). The ratio U/T gives some measure on 

maintenance problems in relevance to test effectiveness during development. We 

illustrate this  for selected projects (P3, P8, P10), subsequent numbers show U/T 

ratio for the specified modules (Mi) within the projects:  

• Project P3: M1 � 0.43, M2 � 0.31, M3 � 0.34, M4 � 0.06, M5 � 0.78, M6 � 0.30, 

M7 � 0.20 

• Project P8: M1 � 0.32, M2 � 0.58, M3 � 0.44, M4 � 0.18, M5 � 0.61, M6 � 0.86, 

M7 � 0.63, M8 � 0.32, M9 � 0.33, M10 � 2.23 

• Project P10: M1 � 0.15, M2 � 0.96, M3 � 0.27, M4 � 0.52, M5 � 0.86,  

M6 � 0.12, M7 � 0.33 

In the presented statistics (profiles) the modules are ordered according to de-

creasing number of problems detected by testers (modules with lower number of 

problems are not included). In most projects the registered problem reports for the 

first modules dominate from 67 to over 90%.  We do not present data for modules 

with less than 10 problems. It is worth noting that in P10 the second module (379 

registered problems by testers) generates also many problems by the users (mainte-

nance phase), the first module seems to be more reliable (689 tester problems ver-

sus 106 user problems). 

The efficiency of handling problems can be visualized in a plot of open prob-

lems (i.e. remaining unresolved) in time. This is illustrated in fig. 2 for system P3 

with time scale in months. An important issue is to correlate this plot with intro-

duced revisions, they are shown as small rectangles in the upper part of the figure. 

Unfortunately, the related code complexity was not reported.  In months 70-90 

some increase of unresolved problems is observed, this queue has been handled 

quite effectively in subsequent few months. From month 91 the system shows good 

stabilization with a negligible number of open problems.  

We can also look at the activities of testers and users in revealing problems. 

For an illustration in fig. 3 we give the distribution of problems detected by indi-



180 

vidual testers and users ordered in a decreasing way. It is typical that some of them 

dominate (uneven distribution). Moreover, higher number of detected problems by 

testers than users confirms good testing effectiveness. 

Figure 2. Distribution of open problems in time for project P3 

Figure 3. Distribution of revealed problems by 29 testers (black bars) and users  

(dashed bars) for project P3 

Table 2. Distribution of specific problems in projects P1-P4 

 DP NR NI RE RO 

U T U T U T U T U T 

P1 

P2 

P3 

P4 

7,0% 

1,8% 

5.5% 

14.5% 

9,8% 

8,1% 

9.8% 

9.7% 

3,3% 

2.3% 

2.4% 

6.8% 

2,6% 

1.8% 

2.4% 

2.8% 

0,0% 

0.5% 

0.1% 

0.0% 

0,6% 

0.4% 

0.5% 

0.4% 

0,3% 

0.05% 

1.2% 

0.0% 

0.2% 

0.2% 

1.7% 

0.4% 

4.5% 

27.6% 

0.1% 

10.7% 

1.0% 

8.2% 

0.7% 

4.8% 

The completed resolved problems can be categorized according to ways 

(methods) of resolving them, e.g. correction included in the deployed version, cor-

rection waiting for deployment. It is worth noting that handling of many problems 

does not involve code corrections, so their costs can be low. In particular they  

relate to: DP - disqualified problems (falsely signaled, non-existing), NR � non 

reproducible problems (cannot be invoked for the described situation), NI � related 

to not important (or not used) functionality, RE � rejected due to excessive mitiga-

tion costs, RO � rejected due to other reasons.  In tab. 2  we give their statistics  

in percent for projects P1-P4 in relevance to problems notified by users (U) and 



181 

tester (T). It is worth tracing the reasons of signaling DP, NR, NI and RO prob-

lems. Moreover, we have duplicated problems which need only identification and 

resolving only the representative  instantiation. In the considered projects P1-P11 

they contribute from a few up to 12 percent. 

5. Conclusion 

Having analyzed collected data in data repositories related to various projects 

(some of them are specified in [7]) we have identified that these data are helpful in 

managing and evaluating the quality of the project as well as development and 

service schemes. As compared with published reports in the literature we identify 

more useful information and propose more metrics. This allows us to identify defi-

ciencies in problem handling processes and avoid them in new projects. On the 

other hand this analysis shows some shortage of collected data which results in the 

accuracy of modelling or result interpretation. In particular, the history of problem 

state changes was available only for one project, moreover information on the size 

and complexity of modules and code corrections was not available. The presented 

methodology is quite general and can be adapted to different development and 

maintenance schemes. 

Further research is targeted at deriving characteristic features of developed 

code (e.g. various complexity measurers) and test coverage measures in order to 

include them in collected data of project repositories. This may facilitate finding 

more accurate models supporting project management.

REFERENCES 

[1] Bluvband Z., Porotsky S., Talmor M. (2011) Advanced models for software reliability 

prediction, Proceedings of IEEE Annual Symp. on Reliability and Maintainability. 

[2] Espinosa-Curiel I. E, Rodriguez-Jacobo J., Fernandez-Zepeda J. A. (2013) A frame-

work for evaluation and control of the factors that influence the software process im-

provement in small organizations, Journal of  Software Evolution and Process, 25, 

393-406. 

[3] Ferrer J., Chicano F., Alba E. (2013) Estimating software testing complexity, Infor-

mation and Software Technology, 55,  2125-2139. 

[4] Gupta A., Kapur R., Jha P.C. (2008) Considering testing efficiency and testing re-

source consumption variations in estimating software reliability, Int. Journal of Reli-

ability, Quality and safety Eng., vol. 15, no. 2. 77-91 

[5] Houston D. (2014) A generalized duration forecasting model of test-and-fix cycles, 

Journal of Software Evolution Process, 26, 877-889.  

[6] Janczarek P., Sosnowski J. (2014) Monitoring Software Development and Usage, 

Przegl�d Elektrotechniczny, Sigma NOT, vol. R. 90, no 2,  117-120. 



182 

[7] Janczarek P., Sosnowski J. (2015) Investigating software testing and maintenance re-

ports: Case study, Information and Software Technology, vol. 58, 272�288. 

[8] Kan S. H. (2003) Metrics and Models in Software Quality Engineering, Addison 

Wesley. 

[9] Kozlov D., Koskinen J., Sakkinen M., Markula J. (2008) Assessing maintainability 

change over multiple software releases, Journal of Software Maintenance and Evolu-

tion, 20 (1), 31-58. 

[10] Krini O., Borcsok J. (2012) New scientific contributions to the prediction of the relia-

bility of critical systems which base on imperfect debugging, Proceedings of IEEE In-

ternational  Symposium on Telecommunications. 

[11] Messquida A-L., Mas A. (2014) A project management improving program according 

to ISO/IEC 29110 and PMBOK, Journal of Software Evolution and Process, 846-854. 

[12] Ogasawara H., Kusanagi T, Aizawa M. (2014) Proposal and practice of software 

process improvement history since 2000, Journal of Software Evolution and Process,  

521-529. 

[13] Petersen K. (2012) A Palette of lean indicators to detect waste in software mainte-

nance: A case study, C. Wohlin (Ed.): XP 2012, LNBIP 111, Springer-Verlag Berlin, 

Heidelberg, 108�122.   

[14] Pham H. (2006) System Software Reliability, Springer.  

[15] Radjenovic D., Hericko M., Tprkar R., Zivkovic A. (2013) Software fault prediction 

metrics, a systematic literature review, Information and Software Technology, 55 

1397-1438. 

[16] Sideratos I. G., Platis A. N., Koutras V. P. Ampazis N. (2014) Reliability analysis of a 

two-stage Goel-Okumoto and Yamada S-Shaped model, W. Zamojski et al. (eds), 

DepCos-RELCOMEX, Advances in Intelligent Systems and Computing 286, Spring-

er, pp. 393-402. 

[17] Sommerville I. (2011) Software engineering, 9th edition, Pearson, Boston. 

[18] Sosnowski J. (2006) Testowanie i niezawodno�� systemów komputerowych, Exit (in 

Polish). 

[19] Sosnowski J., Sabak J. (2001) Software reliability analysis in designing database ori-

ented applications, Proc. of the 27th Euromicro Conference,  IEEE Comp. Society, 

166-173.                                                                      


