PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Update on the study of Alzheimer’s disease through artificial intelligence techniques

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Alzheimer’s disease is the most common form of dementia that can cause a brain neurological disorder with progressive memory loss as a result of brain cell damage. Prevention and treatment of disease is a key challenge in today’s aging society. Accurate diagnosis of Alzheimer’s disease plays an important role in patient management, especially in the early stages of the disease, because awareness of risk allows patients to undergo preventive measures even before irreversible brain damage occurs. Over the years, techniques such as statistical modeling or machine learning algorithms have been used to improve understanding of this condition. The objective of the work is the study of the methods of detection and progression of Alzheimer’s disease through artificial intelligence techniques that have been proposed in the last three years. The methodology used was based on the search, selection, review, and analysis of the state of the art and the most current articles published on the subject. The most representative works were analyzed, which allowed proposing a taxonomic classification of the studied methods and on this basis a possible solution strategy was proposed within the framework of the project developed by the Cuban Center for Neurosciences based on the conditions more convenient in terms of cost and effectiveness and the most current trends based on the use of artificial intelligence techniques.
Twórcy
  • Neuroinformatic Department. Cuban Neuroscience Center, Havana 16600, Cuba
Bibliografia
  • [1] Z. S. Khachaturian. “Diagnosis of Alzheimer’s disease,” Arch. Neurol., vol. 42, no. 11, pp. 1097–1105, Nov. 1985.
  • [2] X. Wang, J. Qi, Y. Yang, and P. Yang. “A Survey of Disease Progression Modeling Techniques for Alzheimer’s Diseases,” 2019 IEEE 17th International Conference on Industrial Informatics (INDIN), 2019, pp. 1237–1242, doi: 10.1109/INDIN41052.2019.8972091.
  • [3] M. F. Folstein, S. E. Folstein, P. R. McHugh. “Minimental state. A practical method for grading the cognitive state of patients for the clinician,”J Psychiatr Res., vol. 12, no. 3, pp. 189–98, 1975.
  • [4] M. Schmidt. “Rey Auditory Verbal Learning Test: A Handbook,” RAVLT, 1996.
  • [5] L. W. Chu, K. Chiu, C. Hui, K. Yu, W. J. Tsui, and P. Lee. “The reliability and validity of the Alzheimer’s Disease Assessment Scale Cognitive Subscale (ADAS‐Cog) among the elderly Chinese in Hong Kong,” Ann Acad. Med. Singapore, vol. 29, no. 4, pp. 474–85, Jul. 2000.
  • [6] G. B. Frisoni, N. Fox, C. Jack, P. Scheltens, M. Thompson. “The clinical use of structural MRI in Alzheimer disease,”Nature Reviews Neurology, 2010.
  • [7] K. R. Baskaran, V. Sanjay. “Deep learning based early diagnosis of Alzheimer’s disease using Semi Supervised GAN,” Annals of the Romanian Society for Cell Biology, pp. 7391–7400, 2021.
  • [8] E. G. Spanakis, et al. “MyHealthAvatar: Personalized and empowerment health services through internet of things technologies,” MOBIHEALTH 2014, 2015.
  • [9] Z. Deng, P. Yang, Y. Zhao, X. Zhao, and F. Dong. “Life‐Logging Data Aggregation Solution for Interdisciplinary Healthcare Research and Collaboration,” 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing, 2015, pp. 2315–2320, doi: 10.1109/CIT/IUCC/DASC/PICOM.2015.342.
  • [10] C. Xie, P. Yang, and Y. Yang. “Open Knowledge Accessing Method in IoT‐Based Hospital Information System for Medical Record Enrichment,”in: IEEE Access, vol. 6, pp. 15202–15211, 2018, doi: 10.1109/ACCESS.2018.2810837.
  • [11] J. Qi, P. Yang, A. Waraich, Z. Deng, Y. Zhao, and Y. Yang. “Examining sensor‐based physical activity recognition and monitoring for healthcare using Internet of Things: A systematic review,” Journal of Biomedical Informatics, vol. 87, pp. 138–153, 2018. doi: 10.1016/j.jbi.2018.09.002.
  • [12] P. Yang, et al. “Lifelogging Data Validation Model for Internet of Things Enabled Personalized Healthcare,” in IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 48, no. 1, pp. 50–64, Jan. 2018, doi: 10.1109/TSMC.2016.2586075.
  • [13] J. Wan, et al. “Sparse Bayesian multi‐task learning for predicting cognitive outcomes from neuroimaging measures in Alzheimer’s disease,” 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012, pp. 940–947, doi: 10.1109/CVPR.2012.6247769.
  • [14] J. Wan, et al. “Identifying the Neuroanatomical Basis of Cognitive Impairment in Alzheimer’s Disease by Correlation‐ and Nonlinearity‐Aware Sparse Bayesian Learning,” in IEEE Transactions on Medical Imaging, vol. 33, no. 7, pp. 1475–1487, July 2014, doi: 10.1109/TMI.2014.2314712.
  • [15] R. Sukkar, E. Katz, Y. Zhang, D. Raunig, and B. T. Wyman. “Disease progression modeling using Hidden Markov Models,” 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2012, pp. 2845–2848, doi: 10.1109/EMBC.2012.6346556.
  • [16] J. Taeho, N. Kwangsik, A. J. Saykin. “Deep Learning in Alzheimer’s Disease: Diagnostic Classification and Prognostic Prediction Using Neuroimaging Data,” Frontiers in Aging Neuroscience, vol. 11, 2019, p. 220. doi: 10.3389/fnagi.2019.00220.
  • [17] I. Goodfellow, J. Pouget‐Abadie, M. Mirza, B. Xu, D. Warde‐Farley, S. Ozair, et al. “Generative adversarial networks,” in Communications of the ACM, vol. 63, no. 11, pp. 139–144, November 2020. doi: 10.1145/3422622.
  • [18] R. S. Sutton, and A. G. Barto. “Reinforcement learning: An introduction,” Robotica, vol. 17, no. 2, pp. 229–235, 1999.
  • [19] S. Al‐Shoukry, T. H. Rassem, and N. M. Makbol. “Alzheimer’s Diseases Detection by Using Deep Learning Algorithms: A Mini‐Review,” in IEEE Access, vol. 8, pp. 77131–77141, 2020, doi: 10.1109/ACCESS.2020.2989396.
  • [20] R. Jain, A. Aggarwal, V. Kumar. “Chapter 1 – A review of deep learning‐based disease detection in Alzheimer’s patients,” Editor(s): Hemanth D. Jude, Handbook of Decision Support Systems for Neurological Disorders, Academic Press, 2021, pp. 1–19. doi: 10.1016/B978‐0‐12‐822271‐3.00004‐9.
  • [21] M. Ghada, A. Fadhl, and G. H. Algaphari. “Machine learning and deep learning‐based approaches on various biomarkers for Alzheimer’s disease earlydetection: A review,” IJSECS vol. 7, no. 2, pp. 26–43, 2021. doi: 10.15282/ijsecs.7.2.2021.4.0087.
  • [22] L. Deng, and D. Yu. “Deep Learning: Methods andApplications,” Foundations and Trends in Signal Processing, vol. 7, no. 3–4, 197–387, 2013.
  • [23] A. Tousignant, P. Lemaître, D. Precup, D. L. Arnold, T. Arbel. “Prediction of Disease Progression in Multiple Sclerosis Patients using Deep Learning Analysis of MRI Data,” Proceedings of Machine Learning Research, 102, pp. 483‐492, 2019.
  • [24] M. Signaevsky, M. Prastawa, K. Farrell. “Artificial intelligence in neuropathology: deep learning‐based assessment of tauopathy,” Lab Invest 99, 1019–1029 (2019). doi: 10.1038/s41374‐019‐0202‐4.
  • [25] A. W. Salehi, P. Baglat, B. B. Sharma, G. Gupta, and A. Upadhya. “A CNN Model: Earlier Diagnosis and Classification of Alzheimer Disease using MRI,” 2020 International Conference on Smart Electronics and Communication (ICOSEC), 2020, pp. 156–161, doi: 10.1109/ICOSEC49089.2020.9215402.
  • [26] Lu B., et al. “A Practical Alzheimer Disease Classifier via Brain Imaging‐Based Deep Learning on 85,721 Samples,” bioRxiv preprint doi: 10.1101/2020.08.18.256594; this version posted April 13, 2021.
  • [27] M. Alshammari, and M. Mezher. “A Modified Convolutional Neural Networks For MRI‐based Images for Detection and Stage Classification of Alzheimer Disease,” 2021 National Computing Colleges Conference (NCCC), 2021, pp. 1–7, doi: 10.1109/NCCC49330.2021.9428810.
  • [28] H. Shamsul, et al. “A Deep Learning Model in the Detection of Alzheimer Disease,” Turkish Journal of Computer and Mathematics Education, vol. 12, no. 10, pp. 4013–4022, 2021. doi: 10.17762/tur‐comat.v12i10.5113.
  • [29] D. Stamate, et al. “A metabolite‐based machine learning approach to diagnose Alzheimer‐type dementia in blood,” Alzheimer’s & Dementia: Translational Research & Clinical Interventions, 5, pp. 933–938, 2019. doi: 10.1016/j.trci.2019.11.001.
  • [30] E. Shaker, A. Tamer, S. M. Riazul I, S. K. Kyung. “Multimodal multitask deep learning model for Alzheimer’s disease progression detection based on time series data”, Neurocomputing, vol. 412, pp. 197–215, 2020. doi: 10.1016/j.neucom. 2020.05.087.
  • [31] G. Lee, K. Nho, B. Kang, et al. “Predicting Alzheimer’s disease progression using multi‐modal deep learning approach.” Sci Rep, 9, 1952 (2019). doi: 10.1038/s41598‐018‐37769‐z.
  • [32] F. J. Martinez‐Murcia, A. Ortiz, J. ‐M. Gorriz, J. Ramirez, and D. Castillo‐Barnes. “Studying the Manifold Structure of Alzheimer’s Disease: A Deep Learning Approach Using Convolutional Autoencoders,” in IEEE Journal of Biomedical and Health Informatics, vol. 24, no. 1, pp. 17–26, Jan. 2020, doi: 10.1109/JBHI.2019.2914970.
  • [33] B. Lei, et al. “Predicting clinical scores for Alzheimer’s disease based on joint and deep learning,” Expert Systems with Applications, 187, 2022. doi: 10.1016/j.eswa.2021.115966.
  • [34] S. Sarraf, A. Sarraf, D. D. DeSouza, J. Anderson, M. Kabia. “OViTAD: Optimized Vision Transformer to Predict Various Stages of Alzheimer’s Disease Using Resting‐State fMRI and Structural MRI Data”. doi: 10.1101/2021.11.27.470184.doi: bioRxiv preprint.
  • [35] Z. Zhang, F. Khalvati. “Introducing Vision Transformer for Alzheimer’s Disease classification task with 3D input”. 2022. arXiv preprint arXiv:2210.01177. doi: 10.48550/arXiv.2210.01177.
  • [36] F. Haghighi, T. Hosseinzadeh, M. R., Z. Zhou, M. B. Gotway, J. Liang. “Learning Semantics‐Enriched Representation via Self‐discovery, Self‐classification, and Self‐restoration.” In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science, vol. 12261. Springer, Cham. doi: 10.1007/978‐3‐030‐59710‐8_14.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b46529cc-1df6-4d95-b113-98ccc4ec74c4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.