Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper we demonstrate, how ℓp-regularized univariate quadratic loss function can be effectively optimized (for 0≤ p ≤ 1) without approximation of penalty term and provide analytical solution for p = 1/2 . Next we adapt this approach for important multivariate cases like linear and logistic regressions, using Coordinate Descent algorithm. At the end we compare sample complexity of ℓ1 with ℓp, 0 ≤ p < 1 regularized models for artificial and real datasets.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
61--72
Opis fizyczny
Bibliogr. 17 poz., rys.
Twórcy
autor
- Group, Department Faculty of Computer Science and Information Technology ul. Żołnierska 49, 71-210, Szczecin, Poland
autor
- Group, Department Faculty of Computer Science and Information Technology ul. Żołnierska 49, 71-210, Szczecin, Poland
Bibliografia
- [1] Tikhonov A.N., On the stability of inverse problems (in Russian). Doklady Akademii Nauk SSSR, 1943, 39 (5), pp. 195–198.
- [2] Frank I.E., Friedman J.H., A Statistical View of Some Chemometrics Regression Tools. Technometrics, 1993, 35, pp. 109–148.
- [3] Williams P.M., Bayesian Regularisation and Pruning using a Laplace Prior. Neural Computation, 1994, 7, pp. 117–143.
- [4] Tibshirani R., Regression Shrinkage and Selection Via the Lasso. Journal of the Royal Statistical Society, Series B, 1996, 58, pp. 267–288.
- [5] Fan J., Li R., Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties. Journal of the American Statistical Association, 2001, 96, pp. 1348–1360.
- [6] Mazumder R., Friedman J., Hastie T., SparseNet: Coordinate Descent With Nonconvex Penalties. Journal of the American Statistical Association, 2011, 106 (495), pp. 1125–1138.
- [7] Nikolova M., Analysis of the Recovery of Edges in Images and Signals by Minimizing Nonconvex Regularized Least-Squares. Multiscale Modeling & Simulation, 2005, 4 (3), pp. 960–991.
- [8] Bredies K., Lorenz D., Reiterer S., Minimization of Non-smooth, Non-convex Functionals by Iterative Thresholding. Journal of Optimization Theory and Applications, 2015, 165, pp. 78–112.
- [9] Moreau J.J., Fonctions convexes duales et points proximaux dans un espace hilbertien. Comptes Rendus de l’Acad´emie des Sciences (Paris), Serie A, 1962, 255, pp. 2897–2899.
- [10] Donoho D., Johnstone I., Ideal Spatial Adaptation by Wavelet Shrinkage. Biometrika, 1994, 81, pp. 425–455.
- [11] Nickalls R.W.D., A New Approach to Solving the Cubic: Cardan’s Solution Revealed. The Mathematical Gazette, 1993, 77 (480), pp. 354–359.
- [12] Kincaid D., Cheney W., Numerical Analysis: Mathematics of Scientific Computing. American Mathematical Society, 2002.
- [13] Green P.J., Iteratively Reweighted Least Squares for Maximum Likelihood Estimation, and some Robust and Resistant Alternatives. Journal of the Royal Statistical Society. Series B (Methodological), 1984, 46 (2).
- [14] Friedman J., Hastie T., Tibshirani R., Regularization Paths for Generalized Linear Models via Coordinate Descent. Journal of Statistical Software, 2010, 33 (1), pp. 1–22.
- [15] Golub T., Slonim D., Tamayo P., Huard C., Gaasenbeek M., Mesirov J., Coller H., Loh M., Downing J., Caligiuri M., Bloomfield C., Lander E., Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 1999, 286 (5439), pp. 531–537.
- [16] Dettling M., BagBoosting for Tumor Classification with Gene Expression Data. Bioinformatics, 2004, 20 (18), pp. 3583–3593.
- [17] Zou H., Hastie T., Regularization and Variable Selection via the Elastic Net. Journal of the Royal Statistical Society, Series B, 2005, 67, pp. 301–320.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b462d371-45fb-4a03-acfd-e04d2c0e162f