PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical study for determination of pulse shaping design variables in SHPB apparatus

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
High strain rate experimental tests are essential in a development process of materials under strongly dynamic conditions. For such a dynamic loading the Split Hopkinson Pressure Bar (SHPB) has been widely used to investigate dynamic behaviour of various materials. It was found that for different materials various shapes of a generated wave are desired. This paper presents a parametric study of Split Hopkinson Pressure Bar in order to find striker’s design variables, which influence the pulse peak shape in the incident bar. With experimental data given it was possible to verify the developed numerical model, which was used for presented investigations. Dynamic numerical simulations were performed using explicit LS-Dyna code with a quasi-optimization process carried out using LS-Opt software in order to find striker’s design variables, which influence the pulse peak shape.
Rocznik
Strony
459--466
Opis fizyczny
Bibliogr. 41 poz., rys., wykr., tab., il.
Twórcy
  • Department of Mechanics and Applied Computer Science, Military University of Technology, Kaliskiego St. 2 00-908 Warsaw, Poland
  • Department of Mechanics and Applied Computer Science, Military University of Technology, Kaliskiego St. 2 00-908 Warsaw, Poland
autor
  • Department of Mechanics and Applied Computer Science, Military University of Technology, Kaliskiego St. 2 00-908 Warsaw, Poland
autor
  • Department of Mechanics and Applied Computer Science, Military University of Technology, Kaliskiego St. 2 00-908 Warsaw, Poland
  • Department of Mechanics and Applied Computer Science, Military University of Technology, Kaliskiego St. 2 00-908 Warsaw, Poland
  • Department of Mechanics and Applied Computer Science, Military University of Technology, Kaliskiego St. 2 00-908 Warsaw, Poland
Bibliografia
  • [1] S. Ellwood, L.J. Griffiths, and D.J. Parry, “Materials testing at high constant strain rates”, J. Physics E: Scientific Instruments 15, 280-282 (1982).
  • [2] J. Hopkinson, “On the rupture of iron wire by a blow”, Proc.Literary and Philosophical Society of Manchester 1, 40-45 (1872).
  • [3] B. Hopkinson, “The effect of momentary stress in metals”, Proc. Royal Society of London 1, 498-507 (1905).
  • [4] C.M. Roland, “Mechanical behaviour of rubber at high strain rates”, Rubber Chemistry and Technology 79, 429-459 (2006).
  • [5] B. Song, W. Chen, “Split Hopkinson pressure bar techniques for characterizing soft materials”, Latin American J. Solid andStructures 2, 113-152 (2005).
  • [6] W. Chen, F. Lu, D.J. Frew, and M.J. Forrestal, “Dynamic compressive testing of soft materials”, J Applied Mechanics 69, 214-223 (2002).
  • [7] N. Tasneem, “Study of wave shaping techniques of split hopkinson pressure bar using finite element analysis”, Thesis, Graduate School of Wichita State University, Kansas, 2005.
  • [8] D.J. Parry, A.G. Walker, and P.R. Dixon, “Hopkinson bar pulse smoothing”, Measurement Science and Technology 6, 443-446 (1995)
  • [9] J. Janiszewski, Testing of Engineering Materials in Conditionsof Dynamical Loading, Military University of Technology, Warszawa, 2012, (in Polish).
  • [10] R. Chmielewski, L. Kruszka, and W. Młodożeniec, “Testing of static and dynamic properties of constructional steel 18G2”, Bulletin of WAT 53 (11-12), 31-45 (2004), (in Polish).
  • [11] W.K. Nowacki, and J.R. Klepaczko, New Experimental Methodsin Material Dynamics and Impact, Centre of Excellence for Advanced Materials and Structures, Polish Academy of Sciences, Warsaw, 2001.
  • [12] J. Hopkinson, “Further experiments on the rupture of iron wire”, Proc. Literary and Philosophical Society of Manchester 1, 119-121 (1872).
  • [13] B. Hopkinson, “A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets”, Philosophical Trans. Royal Society of London 213, 437-456 (1914).
  • [14] R.M. Davies, “A critical study of the Hopkinson pressure bar”, Philosophical Trans. Royal Society of London 240, 375-457 (1948).
  • [15] H. Kolsky, “An investigation of the mechanical properties of materials at very high rates of loading”, Proc. Physical Society 62, 676-700 (1949).
  • [16] K.F. Graff, Wave Motion in Elastic Solids, Dover Publications, New York, 1975.
  • [17] B. Song and W. Chen, “Dynamic stress equilibration in split Hopkinson pressure bar tests on soft materials”, ExperimentalMechanics 44 (3), 300-312 (2004).
  • [18] D.J. Frew, M.J. Forrestal, and W. Chen, “Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar”, Experimental Mechanics 42 (1), 93-106 (2002).
  • [19] J.R. Foley, J.C. Dodson, and C.M. McKinion, “Split Hopkinson bar experiments of preloaded interfaces”, Proc. IMPLAST2010 Conf. 1, CD-ROM (2010).
  • [20] K.S. Vecchio and F. Jiang, “Improved pulse shaping to achieve constant strain rate and stress equilibrium in Split-Hopkinson pressure bar testing”, Metallurgical and Materials Transactions A 38, 2655-2665 (2007).
  • [21] C.E. Franz, P.S. Follansbee, I. Berman, and J.W. Schroeder, High Energy Rate Fabrication, American Society of Mechanical Engineers New York, 1984
  • [22] C.F. Lewis, Properties and Selection: Nonferrous Alloys andPure Metals, American Society for Metals, New York, 1979.
  • [23] H.G. Baron, “Stress/strain curves for some metals and alloys at low temperatures and high rates of strain”, J. Iron and SteelInstitute 182, 354-365 (1956).
  • [24] D.J. Frew, Dynamic Response of Brittle Materials from Penetrationand Split Hopkinson Pressure Bar Experiments, US Army Corps of Engineers, Engineer Research and Development Center, New York, 2001
  • [25] T.J. Cloete, A. van der Westhuizen, S. Kok, and G.N. Nurick, “A tapered striker pulse shaping technique for uniform strain rate dynamic compression of bovine bone”, EDP Sciences 1 901-907 (2009).
  • [26] R. Naghdabadia, M.J. Ashrafia, and J. Arghavani, “Experimental and numerical investigation of pulse-shaped split Hopkinson pressure bar test”, Materials Science and Engineering A 539,285–293 (2012).
  • [27] H. Ramirez and C. Rubio-Gonzalez, “Finite-element simulation of wave propagation and dispersion in Hopkinson bar test”,Materials and design 27, 36–44 (2006).
  • [28] Z. Ping Yu, L. De Shun, P. You Duo, and C. An Hua, “Inverse approach to determine piston profile from impact tress waveform on given non-uniform rod”, Trans. Nonferrous Metals Society of China 11 (2), 297–300 (2001).
  • [29] X.B. Li, T.S. Lok, and J. Zhao, “Dynamic characteristics of granite subjected to intermediaqte loading rate”, Rock Mechanics and Rock Eng. 38 (1), 21–39 (2005).
  • [30] L.K. Seng, “Design of a new impact striker bar for material tests in a split Hopkinson pressure bar”, Civil Eng. Research Bull. 16, 70–71 (2003).
  • [31] L. Wang, M. Xu, J. Zhu, and S. Shi, “A method of combined SHPB technique and BP neural network to study impact response of materials”, Strain 42, 149–158 (2006).
  • [32] L. Xi-bing, H. Liang, Y. Tu-bing, Z. Zi-long, and Y. Zhouyuan, “Relationship between diameter of split Hopkinson pressure bar and minimum loading rate under rock failure”, J. Central South University of Technology 15, 218–223 (2008).
  • [33] B.A. Gama, S.L. Lopatnikov, and J.W. Gillespie Jr., “Hopkinson bar experimental technique: a critical review”, Applied Mechanics Reviews 57, 223–250 (2004).
  • [34] G. Ravichandran and G. Subhash “Critical appraisal of limiting strain rates for compression testing of ceramics in a split Hopkinson pressure bar”, J. American Ceramic Society 77, 263–267 (1994).
  • [35] M.A. Kariem, J.H. Beynon, and D. Ruan, “Misalignment effect in the split Hopkinson pressure bar technique”, Int. J. Impact Eng. 47, 60–70 (2012).
  • [36] Z. Zi-long, H. Liang, L. Qi-yue, and L. Zhi-xiang, “Calibration of split Hopkinson pressure bar system with special shape striker”, J. Central South University of Technology 18, 1139–1143 (2011).
  • [37] A. Kumar, T.S. Lok, and P. Zhao, “Design of an impact striker for a Split Hopkinson pressure bar”, J. Institution of Eng. 44 (1), 119–129 (2004).
  • [38] D.W. Shu, C.Q. Luo, and G.X. Lu, “Numerical simulations of the influence of striker bar length on SHPB measurements”, Int. J. Modern Physics B 22 (31–32), 5813–5818 (2008).
  • [39] R. Gerlach, S.K. Sathianathan, C. Siviour, and N. Petrinic, “A novel method for pulse shaping of Split Hopkinson tensile bar signals”, Int. J. Impact Eng. 38, 976–980 (2011).
  • [40] G. Gray, Mechanical Testing and Evaluations, ASM, Materials Park, 2000.
  • [41] J.O. Hallquist, LS-Dyna: Theoretical Manual, Livermore Software Technology Corporation, Livermore, 2003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b45e7761-c421-4d64-8371-e6b450cb6ef2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.