
317Bull.  Pol.  Ac.:  Tech.  67(2)  2019

BULLETIN OF THE POLISH ACADEMY OF SCIENCES 
TECHNICAL SCIENCES, Vol. 67, No. 2, 2019
DOI: 10.24425/bpas.2019.128602

Abstract. The paper presents the modelling measurement results of the load-displacement relation for scaffold stands and bracings. In the case 
of stands, there are two sections of curves, i.e. a straight-line and curvilinear section, and in the case of bracings, two straight line sections as 
well as one curvilinear section are distinguished. As a result of analyses, it is concluded that the sections which can be approximated by means of 
linear functions should be distinguished in graphs, if possible. On the one hand, this results from the evaluation methods of scaffold components. 
Nevertheless, the determination of elastic-linear scope of components’ operation is useful in engineering practice during computer calculations. 
Moreover, the method of determining an intersection point between functions, approximating tests results, along with analysis of the impact of 
polynomial degree, approximating the research results, on the time and effectiveness of the process of approximating functions selection, are 
all demonstrated in this article. The proposed method can prove useful in all science fields where curves obtained from any research (laboratory 
test, in situ test, numerical analysis) require approximation or replacement with a simpler description.
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impact on the manner of numerical modelling of scaffolds and, 
consequently, on the results of internal forces calculations and 
structure effort. These problems have been described, among 
others, in papers [13‒16]. The results of static-strength calcu-
lations of modular scaffolds of complicated structure with dif-
ferent types of stand-ledger nodes, e.g. pinned nodes, which are 
susceptible and stiff, are compared in paper [16]. The influence 
of imperfections and second-order effects are taken into account 
in calculations. It is demonstrated that the values of stresses in 
stands and ledgers differ from each other even by 100% when 
various methods of nodes modelling are applied. Paper [13] 
concerns the approach to selecting the characteristics of nodes’ 
work in scaffolds, described as the relation between the node 
load and appropriate displacement, as well as the influence of 
these characteristics on internal forces in components. The same 
author described the impact of imperfection models and the 
work of scaffold nodes, determined on the basis of research, 
on the selection of numerical methods and on the duration of 
calculations in paper [14]. The measurements of the moment-ro-
tation relation for nodes of pipe scaffolds and approximation of 
measurements results by different function sets are described in 
paper [15]. There, the authors performed computer calculations 
to verify which set of approximating functions yields the best 
results and, finally, they concluded that in the first part of the 
graph, the best solution is to apply a straight line, representing 
a looseness, and in the other part, to apply two subsequent linear 
functions. The problem of impact of nodes’ susceptibility on 
scaffolds load bearing capacity combined with research on the 
subject of nodes and approximation of test results is the topic 
of papers [17‒20]. A considerable influence of the approxima-
tion method used for test results of nodes on the outcomes of 
static-strength calculations of scaffolds is demonstrated in the 
above-mentioned papers.

1. Introduction

Civil engineering is the field of science in which problem 
solutions require knowledge of many basic sciences such as 
mathematics, physics and chemistry. Paper [1] presents the 
multi-faceted nature of construction and claims that long-term 
observation of buildings or any type of tests (laboratory test, in-
situ test, numerical analysis) allow to develop relations useful 
in engineering practice, known as rules of thumb. However, as 
noted in paper [2], the development of rules of thumb must be 
based on thorough analysis of phenomena as because of sim-
plifications they can lead to incorrect conclusions.

The operation of scaffolds and the provisions regarding 
safety of their users are conditioned upon factors such as, 
among others, technology solutions applied to the production of 
individual components, the quality of production and assembly, 
shape of full scaffolding as well as appropriate determination of 
scaffold effort. Significance of the above-mentioned factors is 
proved by the fact that scaffolds need to comply with European 
requirements and standards [3‒5]. It is also confirmed by the 
research presented in literature, which concerns the analysis 
of load bearing capacity of scaffold nodes [6, 7], geometrical 
and material imperfections [8, 9], research on scaffold stability 
[10‒12], etc. Scaffold components are controlled, e.g. by tests 
which determine load-displacement curves and bearing capacity 
of components, taking account of the technology and quality of 
production. Subsequently, the results of measurements are sub-
jected to statistical analysis whose effects have a considerable 
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Papers [13‒15] referred to the research on nodes suscepti-
bility. Meanwhile, laboratory tests, as per European standards, 
shall be performed in reference to elements such as: ledgers, 
stands, bracings, consoles, stand-ledger nodes at different types 
of loads and a stand-bracing node. Tests can be conducted at 
a single cycle of loading or at several cycles of loading, how-
ever, in the second case, the bracket of measurement results 
shall be determined. In reference to the curves obtained in such 
a manner, one should determine the set of functions which de-
scribe research results with the greatest possible correlation and 
enable the determination of work nature of a given element as 
well as limit calculation load bearing capacity.

This article presents an example of connections between 
research problems and engineering practice. It shows that it 
is possible to develop models that can be treated as rules of 
thumb thanks to scientific research based on such basic fields 
as mathematics and physics and usage of computer science. 
Methods for approximation of curves which are the result of 
measurements are also presented in the paper. This is done on 
the example of modeling of load-displacement curves obtained 
from scaffolding elements tests. This type of elements is chosen 
because as the load increases, changes can be seen in the be-
havior of the system. They lead to change in the character of 
the analyzed curves. In the case of this type of problems, both 
the determination of the set of function equations is necessary 
and the points of transition between them. This problem was 
particularly focused on in the article.

On the basis of selected tests of scaffold components, this 
paper presents: the analysis of the impact of polynomial degree, 
approximating the research results, on the time and effective-
ness of the process of approximating functions and selection 
of the method for determining an intersection point between 
functions. This is preceded by a description of the tests and 
their results along with necessary information on scaffolding 
tests and their assumptions. During the research, an own pro-
gram under the name of Nebelung, enabling statistical analysis 
of measurement results in line with European standard EN 
12811-3 [5], is used.

2. Test description

Research on the possibility of curves selection, approximating 
the results of tests, was performed in reference to scaffold 
stands and bracings. The components consist of aluminum 
pipes and steel heads. Stands are made of pipes of 48.3 mm in 
diameter and wall thickness of 4 mm, and bracings are made of 
a rectangular pipe of the dimensions of 48.3£34 mm as well as 
wall thickness of 4 mm. The tests were performed with the use 
of a Zwick testing machine at the Civil Engineering Laboratory 
of Lublin University of Technology.

The study of load bearing capacity of stands consisted in 
measuring vertical force F, applied to a stand, and displace-
ment u (Fig. 1a). During this process, vertical displacement of 
the crosshead, which is simultaneously the displacement of the 
loaded end of the stand, was measured. Vertical load was ap-
plied to the upper end of the stand.

The research on the load bearing capacity of bracing con-
sisted in applying horizontal force to the system whose view is 
shown in Fig. 1b. Loading was applied with the use of a steel 
rope. Since the rope stretched, additional displacement sensors 
LVDT were used, located directly at a loaded node, measuring 
two horizontal component displacements, which were mutually 
perpendicular. The resultant value from both sensors was as-
sumed as u displacement for the purpose of analysis. A bearing, 
fixed stiffly to the load-bearing components of the press ma-
chine, was used to excite horizontal load. The bearing changed 
the direction of loading from vertical at crosshead Fzwick to 
a horizontal one applied to the F node (Fig. 2). The values of 
F forces were determined on the basis of following formula:

 F = 
Fzwick

sin(α)
, (1)

where sin(α) is determined from the formulae below:

Fig. 1. System for testing load-bearing capacity of: a) scaffold stands, 
b) bracings

(a) (b)

Fig. 2. The diagram of steel wire fixing to a machine crosshead
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3. Approximation of research results

3.1. Presentation of assumptions. The aims and assumptions 
of analysis are presented prior to the analysis of sample results 
of measurements. The outcomes of measurements are load F 
– displacement u relations and the main component of analysis 
is the approximation of these curves by the set of functions so 
that the correlation between measurement results and individual 
functions is the greatest possible and meets the requirement 
ρ2 ¸ 0,95, where ρ2 – Pearson correlation coefficient deter-
mined from the following formula:

	 ρ =  i=1

n

∑(Fi ¡ F–)( fi ¡ f–)

i=1

n

∑(Fi ¡ F–)2

i=1

n

∑( fi ¡ f–)2

, (4)

where: Fi – result of measurement for value ui, F
– – average 

value of measurement result from the range of (u1, un), fi – value 
of function for abscissa wi, f

– – average value of function from 
the range of (u1, un).

The possibilities of function sets selection from the math-
ematical point of view are described e.g. in paper [13]. How-
ever, in this paper, the selection of function is based on the 
assumption that it is necessary to determine the part of the curve 
which can be approximated by a linear function, describing lin-
ear-elastic work of a scaffold component. The need to determine 
the linear part results from the fact that standard EN 12811-3 
[5] imposes the restrictions referring to the determination of 
load value, at which it can be stated that the scaffold compo-
nent no longer withstands the impact applied by the test press. 
Maximum loading FC, obtained in the measurement (point C 
in Fig. 4a), is treated mainly as the maximum value of loading. 
However, standard EN 12811‒3 [5] recommends also the veri-
fication of load value FA, at which the quotient of plastic energy 
Ep to elastic energy Es is qe = Ep/Es = 11. The values of plastic 
energy Ep and elastic energy Es are determined as areas under 
the load F – displacement u curves, as shown in Fig. 4b.

Nevertheless, the assumption that within this range, a scaffold 
component works in the linear-elastic range, yet primarily an elastic  
one, is necessary to determine load FB at which limited plastic 
deformations upl_cr (i.e. damage) occur. In the case of scaffolds, 
due to multiple use of components, damage that is unrepairable 
cannot be acceptable. The use of a straight line, describing the 
linear part, to determine point B in the load F – displacement 
u graph, that is the value of load FB, is shown in Fig. 4a.

Research experience shows that these three values of FA, 
FB and FC frequently need to be supplemented by other points 
in the curve, since the assumption of what the maximum load-
bearing capacity means depends on the function which this ele-
ment fulfills in a scaffold. The values of the parameter, defined 
as a 5% quantile of logarithm normal distribution of values F 
at the level of confidence of 75% (cf. standard EN 12811-3 
[5]), can eventually be determined for particular points, and 
the minimum value among all the obtained ones for points A, 
B and C is assumed as the permitted characteristic value Fk, b. 

 
xzwick + k

290 mm ¡ 
85 mm

2

tan(α)

1 + tan2(α)

 = tan(α) , (2)

 
sin2(α) + cos2(α) = 1

tan(α) = 
sin(α)

cos(α)

 ) sin(α) = 
tan(α)

1 + tan2(α)
, (3)

where: xzwick – displacement of press crosshead, k = 127.5 mm 
for the distance between stands equals 3.072 m, and k = 167.5 mm 
for the rest of scaffolds sets (cf. Fig. 2).

In the case of both tests, the increase of loading was con-
trolled by displacements and it stood at 5 mm/min. The system 
was loaded to about 200N, then it was unloaded and loaded 
once again in the relevant measurement. The measurements 
were carried out for five stands as well as five bracings. The 
results from relevant measurements are shown in Fig. 3.

Fig. 3. Load-displacement curves obtained in tests for: a) stand; b) bracing

(b)

F 
[k

N
]

u [mm]

F 
[k

N
]

a)
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Further decrease of value of the component limit load, limiting 
the possibility of plasticity occurrence, consists in applying the 
following formula:

 Fk, nom = 
Fk, b

γR2
, (5)

where

 1.25 ¸ γR2 =  – 0.025q–e + 1.275 ¸ 1.00 . (6)

And the last decrease of the permissible load value consists in 
considering partial safety coefficients according to the formula 
below:

 Fsp = 
Fk, nom

γM γF
, (7)

where γM = 1.1 and γF = 1.5 are partial coefficients.
A detailed method for determining limit calculation values 

of the component load is contained in standard EN 12811-3 [5] 
and in [21]. Meanwhile, (5) and (6) are shown in this paper in 
order to demonstrate that the approach to approximate measure-
ment results is significant also while determining load bearing 
capacity of components, and primarily while determining pa-
rameter qe where the approximation of a portion of research 
results by a linear function is essential.

As it can be observed from the above problem, the linear 
function shall also be included in the set of functions approx-

imating the test results for scaffold components. Subsequent 
assumptions are as follows:
● on the load-displacement curve, a fragment can be deter-

mined which can be approximated by means of a straight line,
● on the load-displacement curve, there are fragments which 

can be approximated by means of polynomial of n-degree, 
described by the following formula:

 F = 
i =0

n

∑ ai ui , (8)

● individual approximating functions shall be selected so as 
to obtain possibly the greatest correlation with the results 
of measurements, and thus the values of correlation coeffi-
cients ρ2 for particular approximating functions,

● the degree of applied polynomials shall possibly be the least 
since the increase of polynomial degree of approximating 
functions does not increase the accuracy of approximation, 
yet it lengthens the calculation time, which is confirmed by 
the analyses presented in this paper.

The introduction of these assumptions is shown in the following 
points on two selected examples, i.e. on the results of measure-
ments of force-displacement relations for stands and bracings.

3.2. Selection of curves for tests of load-bearing capacity of  
stands. The selection of functions approximating measurement 
results is preceded by the analysis of graph shape with the in-
dication of which parts can be separated. As it can be seen in 
Fig. 3a, there is one linear and one curvilinear part. The degree 
of polynomial, approximating the curvilinear part, was selected 
following analysis of the impact of polynomial degree on the 
time of calculation performance (Fig. 5) as well as on the av-
erage value of the square of correlation coefficient (Fig. 6), 
determined from the following formula:

	 ρ
–2 =  1

U
U
∫(ρ(u))2du , (9)

where: U – range of deflection measurements, ρ(u) – value 
of correlation between test results and a polynomial when the 
transition point of intersection between a straight line and poly-
nomial has got abscissa u.

As it can be seen in Fig. 5 and Fig. 6, the higher the de-
gree of polynomial, the longer the calculations whose aim is 
to determine the set of functions approximating measurement 
results. On the other hand, Fig. 6 shows that the average value 
of correlation coefficient square at a polynomial degree of 4 
is similar to the value of this coefficient at higher degrees of 
polynomial. There can only be one conclusion, i.e. that the 
curvilinear part of a graph shall be approximated by the poly-
nomial degree of 4.

Another stage of analysis is selection of the point at which 
a straight line ends and a polynomial starts. It is assumed that 
the values ρp

2(u) (for a straight line) and ρw
2(u) (for a polyno-

mial) at this point shall assume possibly the highest values. For 
this purpose, the analysis of changes in values of the following 
functions was carried out:

Fig. 4. Location of points defining load-bearing capacity of a com-
ponent
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 g1(u) = ρp
2(u) + ρw

2(u) , (10)

 g2(u) = ρp
2(u)ρw

2(u) , (11)

 g3(u) = 2
ρp

2(u)ρw
2(u)

ρp
2(u) + ρw

2(u)
, (12)

The last of the functions was developed by the authors in 
analogy to the formula used for research on statistic hypothesis.

For functions g1(u), g2(u) and g3(u), local maxima were 
determined and their abscissae are recommended to be the first 
coordinates of the transition point between a straight line and 
polynomial approximating measurement results. Figure 7 shows 
sample sets of graphs of correlation coefficients squares as well 

Fig. 6. Relation of average value of correlation and the polynomial degree approximating nonlinear part of measurements in the tests on stands

Fig. 7. Set of graphs:  – ρp
2(u),  – ρw

2(u),  – g1(u)/2,  – g2(u), + – g3(u): a) for stand No. 1, b) for stand No. 3
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Fig. 5. Relation of calculation time and polynomial degree approximating nonlinear part of measurements in the tests on stands
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as functions g1(u), g2(u) and g3(u), while Fig. 8 demonstrates 
a screenshot with marked points which correspond to subse-
quent local maxima for function g3(u), and Table 2 summarizes 
the coordinates of points at which local maxima and their values 
are stated. As it is shown in Table 1, the values of displacements 
u, at which local maxima of particular functions were obtained, 
are close to each other. Hence, Fig. 8 shows only one selected 
result of Nebelung program operation. The points at which the 
maximum values of functions g1(u), g2(u) and g3(u) were ob-
tained are also close to each other.

As it results from the analysis of Fig. 7, Fig. 8 and Table 1, 
the point of abscissa u = 4.38 mm shall be selected as the point 
between a straight line and polynomial, since the optimum 
values of correlation coefficients of both graph parts were ob-
tained for this point. Obviously, such a thorough analysis does 
not need to be performed for individual results. On the basis 
of this analysis, it is clear that the results recommended by the 
program, on the grounds of function g3(u), are reliable. Table 2 
shows the results of function selection for five test trials con-
ducted for an aluminum stand, which were selected with the 
use of this function.

In the case of tests on a stand, only point C (Fig. 4a) was 
possible to be determined. Its coordinates determined the speci-
fied permissible load of a stand. Particular values which referred 
to these calculations are compiled in Table 3. The calculated, 
permissible compressive force of a stand F = 24.21 kN is ob-

tained as the final value. The point of this ordinate falls within 
the range of system linear work, which in engineering practice 
means that a scaffold shall be designed so that a normal force in 
a stand from real loads would not be greater than F = 24.21 kN 
and during computer calculations of scaffold effort, the material 
of stands can be modelled by linear relation σ -ε .

Table 1 
Local maxima of functions g1(u), g2(u) and g3(u)

Fu
nc

tio
n

u 
[mm]

F 
[kN] ρp

2(u) ρw
2(u) g1(u)

2
g2(u) g3(u)

g1(u) 0.3766 3.2057 0.9945 0.9990 0.9967
1.1932 12.2675 0.9984 0.9993 0.9989
4.3931 51.7731 0.9988 0.9999 0.9994
7.6432 49.4160 0.8396 0.9998 0.9197

g2(u) 0.3766 3.2057 0.9945 0.9990 0.9957
1.1932 12.2675 0.9984 0.9993 0.9982
4.3848 51.7033 0.9988 0.9999 0.9993

g3(u) 0.3766 3.2057 0.9945 0.9990 0.9962
1.1932 12.2675 0.9984 0.9993 0.9985
4.3848 51.7033 0.9988 0.9999 0.9994
7.6432 49.4160 0.8396 0.9998 0.9196

Fig. 8. Screenshot on the basis of tests on stand No. 1 with points which correspond to maxima in the graph of function g3(u)



323

Modelling of load-displacement curves obtained from scaffold components tests

Bull.  Pol.  Ac.:  Tech.  67(2)  2019

3.3. Selection of curves for tests of load-bearing capacity of 
bracings. The results of load bearing capacity measurements 
at compression are shown in Fig. 3b. This example concerns 
tests on a bracing mounted in the field of 2.0 m£1.572 m. The 
following parts are seen at every curve representing subsequent 
measurements:
● the graph part which is responsible for looseness in a bracing 

connection to rosette, and which can be interpolated by 
a linear equation,

● the graph part which can be approximated by a linear equation,
● the graph part which shall be approximated by a polynomial.

Before commencing the process to determine approxi-
mating functions, the polynomial degree, describing the third 
one among approximating functions, shall be defined. The re-
lation of the average value of correlation coefficient square, 
described by (9), and a polynomial degree was verified in the 
case of bracings similarly as in the case of stands. The result 
of such calculation is shown in Fig. 9, on the basis of which 

Table 2 
Juxtaposition of functions approximating measurement results

No. Straight line equation
Transition point 

u [mm]
Polynomial equation

1
F = 12.46 u ¡ 1.91;
ρ2 = 0.9988;

4.38
F = – 0.14 u4 + 3.98 u3 + – 42.86 u2 + 201.51 u ¡ 292.39;
ρ2 = 0.9999

2
F = 12.52 u ¡ 1.77;
ρ2 = 0.9992

4.11
F = – 0.12 u4 + 3.45 u3 + – 35.8 u2 + 163.49 u ¡ 220.65;
ρ2 = 0.9999

3
F = 12.35 u ¡ 2.02;
ρ2 = 0.9993

4.12
F = – 0.09 u4 + 2.59 u3 + – 28.69 u2 + 138.97 u ¡ 193.00;
ρ2 = 0.9999

4
F = 13.30 u ¡ 2.67;
ρ2 = 0.9982

4.43
F = – 0.22 u4 + 5.93 u3 + – 60.66 u2 + 271.06 u ¡ 387.85;
ρ2 = 0.9999

5
F = 12.96 u ¡ 1.71
ρ2 = 0.9991

4.45
F = – 0.33 u4 + 8.65 u3 + – 85.55 u2 + 371.84 u ¡ 539.63;
ρ2 = 0.9999

Table 3 
Determination of the specified permissible calculation load on a stand according to [5]

No. FC  

[kN]
qe Fk,b  

[kN]
q–e γR2 Fk, nom 

[kN]
Fsp  

[kN]

1 54.18 1.1647

49.7112 1.2243 1.2444 39.9482 24.2110
2 52.87 1.2940
3 53.72 1.3290
4 56.25 1.1346
5 57.05 1.1994

Fig. 9. Relation of average correlation value and polynomial degree approximating the nonlinear part of measurements

Polynomial degree

ρ– 2
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● selection of the point at which the first straight line ends, 
on the basis of local maxima and the graph shape from 
measurements,

● determination of value ρp
2(u) (for the second straight line) 

and ρw
2(u) (for a polynomial) as well as one of the functions 

g1(u), g2(u) and g3(u), a sample set of all the functions is 
shown in Fig. 11,

● determination of local maxima of one selected function, in 
this case function g3(u),

● selection of a point between the parts of research results, 
approximated by another linear function and a polynomial, 
on the basis of local maxima and the graph shape from 
measurements.

Fig. 10. Graphs of correlation coefficients square ρ l
2(u), markings as in Fig. 9

Fig. 11. Functions set at the approximation of third part of curve from research by a polynomial of 4th degree:  – ρp
2(u),  – ρw

2(u),  – g1(u)/2, 
 – g2(u), + – g3(u): a) for bracing No. 2, b) for bracing No. 4

(a) (b)

it is evident that the third part of calculation results can be 
approximated by a polynomial of 4th or 5th degree. It was de-
cided to approximate it by the 4th degree polynomial, since the 
coefficient of approximating polynomial at the expression u5 
is small enough, in comparison with the remaining coefficients 
of the polynomial, so that this part of the polynomial does not 
influence final results of statistical analyses.

The procedure of load-displacement curve approximation 
in the Nebelung program is the following:
● determination of correlation coefficient square ρ l

2(u) be-
tween points lying on the first straight line and measure-
ments results (Fig. 10),

● determination of local maxima of functions ρ l
2(u),

ρ l
2
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The results of approximation according to the above proce-
dure are compiled in Table 4. Figure 12 shows a sample result of 
approximation in the form of a graph. This figure also demon-
strates the location of points B and C. Point B is determined on 
the basis of the second straight line as well as the assumption 
that ucr = L/500, where L is the element’s length. Determina-
tion of this would not be possible if the other part of the curve 
from research was approximated by a different type of function.

It shall also be pointed out that the correlation coefficient for 
the first straight line, which approximates the part responsible 
for the looseness in connections, is smaller than for other areas. 
This is due to the initial nature of system operation, which is 
subjected to inaccuracies and differences in the assembly of 
particular sets as well as possibly to the disturbances of entire 
system operation during testing before particular parts match 
each other.

Table 4 
Functions approximating load-displacement curves

First straight line 
equation

Trans. 
point

u [mm]

Second straight 
line equation

Trans. 
point

u [mm]
Polynomial equation

1
F = 0.0394 u + 0.0139;
ρ2 = 0.9279

3.99
F = 0.32 u + –1.20;
ρ2 = 0.9990

20.67
F = –0.000004 u4 + 0.000719 u3 + –0.0487 u2 + 1.54 u + –11.12;
ρ2 = 0.9970

2
F = 0.0290 u + 0.0123;
ρ2 = 0.9497

6.34
F = 0.28 u + –2.27;
ρ2 = 0.9819

30.71
F = –0.000002 u4 + 0.000452 u3 + –0.0392u2 + 1.56 u + –15.75;
ρ2 = 0.9933

3
F = 0.0258 u + 0.0061;
ρ2 = 0.9230

8.25
F = 0.35 u + –2.84;
ρ2 = 0.9982

22.79
F = 0.000041 u3 + 0.0112 u2 + 0.72 u + –6.00;
ρ2 = 0.9994

4
F = 0.0352 u + 0.0202;
ρ2 = 0.9676

5.43
F = 0.31 u + –1.53;
ρ2 = 0.9990

15.96
F = –0.000001 u4 + 0.000189 u3 + –0.0198u2 + 0.91 u + –6.65;
ρ2 = 0.9994

5
F = 0.0249 u + 0.0158;
ρ2 = 0.9649

7.74
F = 0.30 u + –2.40;
ρ2 = 0.9934

25.46
F = –0.000001 u4 + 0.000265 u3 + –0.0289u2 + 1.34 u + –14.06;
ρ2 = 0.9954

Fig. 12. Result of measurements approximation as well as location of points A, B and C for bracing No. 3
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Table 5 compiles the tests results and parameters essential to 
determine the permissible value of stand load. As in the case of 
a stand, calculated value F = 3.75 kN for a bracing falls within 
a linear scope of bracing operation. Yet, in this case it should 
be noted that there is a looseness in the stand-bracing connec-
tion, described by the first straight line, and that the slope of 
the other one is considerably lower than the one resulting from 
the formula below:

 F
u

 =  EA
L

cos(β) , (13)

which would be real provided that a bracing assumed a com-
pressive force. The following markings were used in formula 
(12): E = 7 ∙ 107 kPa – Young’s modulus, A = 4.76 ∙ 10– 4 m2 
– cross-sectional area, β – angle between a ledger and bracing.

The expression F/u, determined from (13), is 8.094 kN/mm 
and coefficients at u in the equation of the second straight line 
equal about 0.3 kN/mm. This results from the fact that the 
operation of a set is not dependent on the resistance of a brac-
ing’s main part, which is a pipe. This operation is conditioned 
upon the stiffness of the bracing-stand connection and a con-
struction solution applied to connect the pipe with the head. 
Hence, a material of a component itself can be modelled as 
a linear-elastic one, whereas the model of a bracing-stand con-
nection should take a looseness and connection susceptibility 
into account.

4. Conclusions

The paper presents research methods that allow to obtain reli-
able models describing measurement results. The models con-
sist of a set of functions, selected so as to obtain the greatest 
possible correlation between the test results and model func-
tions. Moreover, it is highly crucial that the models can be used 
in engineering practice. From the very beginning of this paper, 
it is stated that it is necessary to distinguish the part of research 
results which is considered to describe a linear-elastic nature 
of component operation. The straight line equation, approx-
imating this part of research results, is needed to determine 
parameter qe and potentially point B (Fig. 4a). Moreover, in 
engineering practice, designing the construction of scaffolds 

is substantially simplified by the application of linear-elastic 
material models.

In reference to the tests of scaffolds components, the sets of 
functions, approximating measurements results, as well as per-
missible loads of components were determined. The procedure 
used for this is mainly based on the recommendations of stan-
dard [5]. The authors proposed the approach of determining the 
degree of polynomials and ranges in which particular approxi-
mating functions are selected. All three functions of correlation 
coefficients g1(u), g2(u) and g3(u) demonstrate local maxima for 
similar values, and thus all of them can be used for the selection 
of intersection points for scaffold tests. For other research, the 
function g3(u) can prove more useful. It should be recalled that 
the authors developed this function in analogy to the formula 
used for research on statistic hypothesis. Function g3(u) has no 
defect which can occur for other functions. For function g1(u) 
errors can result from properties of summation and for function 
g2(u) they originate from the properties of multiplication.

Finally, the proposed method can be useful in all fields 
of science where curves obtained from any research (labo-
ratory test, in situ test, numerical analysis) require approxi-
mation or replacement with a simpler description. However, 
independently from the applied methods and fields of science, 
while performing research of this type, it is crucial to analyze 
the measurement results visually and to compare them with al-
ready known laws of physics in order to describe the operation 
of a system in a proper manner.
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